Buch, Englisch, 460 Seiten, Format (B × H): 170 mm x 244 mm, Gewicht: 1043 g
Methods and Applications
Buch, Englisch, 460 Seiten, Format (B × H): 170 mm x 244 mm, Gewicht: 1043 g
ISBN: 978-3-527-34541-0
Verlag: Wiley VCH Verlag GmbH
A guide to modifying and functionalizing the surfaces of polymers
Surface Modification of Polymers is an essential guide to the myriad methods that can be employed to modify and functionalize the surfaces of polymers. The functionalization of polymer surfaces is often required for applications in sensors, membranes, medicinal devices, and others. The contributors?noted experts on the topic?describe the polymer surface in detail and discuss the internal and external factors that influence surface properties.
This comprehensive guide to the most important methods for the introduction of new functionalities is an authoritative resource for everyone working in the field. This book explores many applications, including the plasma polymerization technique, organic surface functionalization by initiated chemical vapor deposition, photoinduced functionalization on polymer surfaces, functionalization of polymers by hydrolysis, aminolysis, reduction, oxidation, surface modification of nanoparticles, and many more. Inside, readers will find information on various applications in the biomedical field, food science, and membrane science. This important book:
-Offers a range of polymer functionalization methods for biomedical applications, water filtration membranes, and food science
-Contains discussions of the key surface modification methods, including plasma and chemical techniques, as well as applications for nanotechnology, environmental filtration, food science, and biomedicine
-Includes contributions from a team of international renowned experts
Written for polymer chemists, materials scientists, plasma physicists, analytical chemists, surface physicists, and surface chemists, Surface Modification of Polymers offers a comprehensive and application-oriented review of the important functionalization methods with a special focus on biomedical applications, membrane science, and food science.
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Verfahrenstechnik | Chemieingenieurwesen | Biotechnologie Verfahrenstechnik, Chemieingenieurwesen
- Naturwissenschaften Chemie Organische Chemie Polymerchemie
- Naturwissenschaften Physik Thermodynamik Oberflächen- und Grenzflächenphysik, Dünne Schichten
- Naturwissenschaften Chemie Physikalische Chemie Oberflächenchemie und Adsorption
- Naturwissenschaften Chemie Chemie Allgemein Pharmazeutische Chemie, Medizinische Chemie
- Technische Wissenschaften Verfahrenstechnik | Chemieingenieurwesen | Biotechnologie Technologie der Kunststoffe und Polymere
Weitere Infos & Material
Introduction xiii
1 The Surface of Polymers 1
Rosica Mincheva and Jean-Marie Raquez
1.1 Introduction 1
1.2 The Surface of Polymers 2
1.2.1 Definition of a Polymer Surface 2
1.2.2 Factors Determining a Polymer Surface 3
1.2.2.1 Internal Factors 3
1.2.2.2 External Factors 4
1.2.3 The Polymer Surface at a Microscopic Level 11
1.3 Properties of Polymer Surfaces at Interfaces 12
1.3.1 Surface Wettability 13
1.3.2 Surface Thermal Properties 15
1.3.2.1 Surface Tg 15
1.3.2.2 Surface Crystallization 17
1.4 Experimental Methods for Investigating Polymer Surfaces at Interfaces 21
1.5 Conclusions 21
References 21
Part I Gas Phase Methods 31
2 Surface Treatment of Polymers by Plasma 33
Pieter Cools, Laura Astoreca, Parinaz Saadat Esbah Tabaei, Monica Thukkaram, Herbert De Smet, Rino Morent, and Nathalie De Geyter
2.1 Plasma: An Introduction 33
2.1.1 Definition 33
2.1.2 Thermal Versus Nonthermal Plasma 34
2.1.3 The Formation of Nonthermal Plasma 35
2.1.4 Plasma Generation and Operating Conditions 37
2.1.4.1 Different Methods of Plasma Generation 37
2.1.4.2 DC Discharges 38
2.1.4.3 DC Pulsed Discharges 38
2.1.4.4 RF and MW Discharges 38
2.1.4.5 Dielectric Barrier Discharge (DBD) 39
2.1.4.6 Atmospheric Pressure Plasma Jet (APPJ) 40
2.1.4.7 Gliding Arc 41
2.1.5 Nonthermal Plasma for Polymer Surface Treatment 41
2.2 Applications of Plasma Surface Activation of Polymers 43
2.2.1 Adhesion Improvement 43
2.2.2 Packaging and Textile Applications 47
2.2.2.1 Printability Enhancement 47
2.2.2.2 Dyeability Improvement 47
2.2.2.3 Mass Transfer Changes 49
2.2.3 Biomedical Applications 50
2.2.3.1 Inert Synthetic Polymers 50
2.2.3.2 Biodegradable Polymers 53
2.3 Plasma Grafting 56
2.4 Hydrophobic Recovery 59
2.5 Conclusion 61
References 61
3 A Joint Mechanistic Description of Plasma Polymers Synthesized at Low and Atmospheric Pressure 67
Damien Thiry, François Reniers, and Rony Snyders
3.1 Introduction 67
3.2 Plasma Polymerization 69
3.2.1 Plasma Fundamentals 70
3.2.2 Growth Mechanism 72
3.3 Probing the Plasma Chemistry 83
3.3.1 Optical Emission Spectroscopy 84
3.3.2 Mass Spectrometry 87
3.4 Conclusions 96
References 97
4 Organic Surface Functionalization by Initiated CVD (iCVD) 107
Karen K. Gleason
4.1 Introduction 107
4.2 Mechanistic Principles of iCVD 108
4.3 Functional, Surface Reactive, and Responsive Organic Films Prepared by iCVD 113
4.4 Interfacial Engineering with iCVD: Adhesion and Grafting 127
4.5 Reactors for Synthesizing Organic Films by iCVD 128
4.6 Summary 129
References 130
5 Atomic Layer Deposition and Vapor Phase Infiltration 135
Mark D. Losego and Qing Peng
5.1 Atomic Layer Deposition Versus Vapor Phase Infiltration 135
5.2 Atomic Layer Deposition (ALD) on Polymers 138
5.2.1 Chemical Mechanisms of ALD 138
5.2.2 ALD on Polymers with Dense –OH Groups: Cellulose and Poly(vinyl alcohol) 140
5.2.3 ALD onto “Unreactive” Polymer Substrates 141
5.2.4 Applications of ALD Coated Polymers 143
5.2.4.1 ALD Coated Cotton Fibers 143
5.2.4.2 Applications for ALD Coatings on Other Polymers 144
5.3 Vapor Phase Infiltration of Polymers 145
5.3.1 Processing Thermodynamics and Kinetics of VPI 145
5.3.1.1 Thermodynamics of Vapor-Phase Precursor Sorption into Polymers 145
5.3.1.2 Kinetics of Precursor Diffusion During VPI 147
5.3.1.3 VPI Processes Incorporating Both Penetrant Diffusion and Reaction 148
5.3.1.4 Measuring the Thermodynamics and Kinetics of a VPI Process 149
<