Pizzinga | Restricted Kalman Filtering | Buch | 978-1-4614-4737-5 | sack.de

Buch, Englisch, 62 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 125 g

Reihe: SpringerBriefs in Statistics

Pizzinga

Restricted Kalman Filtering

Theory, Methods, and Application
2012
ISBN: 978-1-4614-4737-5
Verlag: Springer

Theory, Methods, and Application

Buch, Englisch, 62 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 125 g

Reihe: SpringerBriefs in Statistics

ISBN: 978-1-4614-4737-5
Verlag: Springer


In statistics, the Kalman filter is a mathematical method whose purpose is to use a series of measurements observed over time, containing random variations and other inaccuracies, and produce estimates that tend to be closer to the true unknown values than those that would be based on a single measurement alone.  This Brief offers developments on Kalman filtering subject to general linear constraints. There are essentially three types of contributions: new proofs for results already established; new results within the subject; and applications in investment analysis and macroeconomics, where the proposed methods are illustrated and evaluated. The Brief has a short chapter on linear state space models and the Kalman filter, aiming to make the book self-contained and to give a quick reference to the reader (notation and terminology). The prerequisites would be a contact with time series analysis in the level of Hamilton (1994) or Brockwell & Davis (2002) and also with linear state models and the Kalman filter – each of these books has a chapter entirely dedicated to the subject. The book is intended for graduate students, researchers and practitioners in statistics (specifically: time series analysis and econometrics).

Pizzinga Restricted Kalman Filtering jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Introduction.- Linear state space models and the Kalman filtering: a briefing.- Restricted Kalman filtering: theoretical issues.- Restricted Kalman filtering: methodological issues.- Applications.- Further Extensions.


Adrian Pizzinga, Department of Statistics, Institute of Mathematics and Statistics, Fluminense Federal University (UFF) Rio de Janeiro, Brazil



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.