Pluta | Ranges of Bimodule Projections and Conditional Expectations | Buch | 978-1-4438-4612-7 | sack.de

Buch, Englisch, 150 Seiten

Pluta

Ranges of Bimodule Projections and Conditional Expectations


1. Auflage 2013
ISBN: 978-1-4438-4612-7
Verlag: Cambridge Scholars Publishing

Buch, Englisch, 150 Seiten

ISBN: 978-1-4438-4612-7
Verlag: Cambridge Scholars Publishing


The algebraic theory of corner subrings introduced by Lam (as an abstraction of the properties of Peirce corners eRe of a ring R associated with an idempotent e in R) is investigated here in the context of Banach and C*-algebras. We propose a general algebraic approach which includes the notion of ranges of (completely) contractive conditional expectations on C*-algebras and on ternary rings of operators, and we investigate when topological properties are consequences of the algebraic assumptions. For commutative C*-algebras we show that dense corners cannot be proper and that self-adjoint corners must be closed and always have closed complements (and may also have non-closed complements). For C*-algebras we show that Peirce corners and some more general corners are similar to self-adjoint corners. We show uniqueness of complements for certain classes of corners in general C*-algebras, and establish that a primitive C*-algebra must be prime if it has a prime Peirce corner. Further we consider corners in ternary rings of operators (TROs) and characterise corners of Hilbertian TROs as closed subspaces.
Pluta Ranges of Bimodule Projections and Conditional Expectations jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Pluta, Robert
Robert Pluta received his PhD in Mathematics from Trinity College, Dublin, in 2012. He is currently a Visiting Assistant Professor of Mathematics at the University of Iowa. His research interests are in operator algebras and operator spaces.

Robert Pluta received his PhD in Mathematics from Trinity College, Dublin, in 2012. He is currently a Visiting Assistant Professor of Mathematics at the University of Iowa. His research interests are in operator algebras and operator spaces.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.