Buch, Englisch, Band 45, 279 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1320 g
Buch, Englisch, Band 45, 279 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1320 g
ISBN: 978-3-540-02234-3
Verlag: Springer Berlin Heidelberg
In this text the authors consider the Korteweg-de Vries (KdV) equation (u = - u + 6uu) with periodic boundary conditions. Derived to describe long surface waves in a narrow and shallow channel, this equation in fact models waves in homogeneous, weakly nonlinear and weakly dispersive media in general.
Viewing the KdV equation as an infinite dimensional, and in fact integrable Hamiltonian system, we first construct action-angle coordinates which turn out to be globally defined. They make evident that all solutions of the periodic KdV equation are periodic, quasi-periodic or almost-periodic in time. Also, their construction leads to some new results along the way.
Subsequently, these coordinates allow us to apply a general KAM theorem for a class of integrable Hamiltonian pde's, proving that large families of periodic and quasi-periodic solutions persist under sufficiently small Hamiltonian perturbations.
The pertinent nondegeneracy conditions are verified by calculating the first few Birkhoff normal form terms -- an essentially elementary calculation.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
- Mathematik | Informatik Mathematik Mathematische Analysis Harmonische Analysis, Fourier-Mathematik
- Naturwissenschaften Physik Angewandte Physik Statistische Physik, Dynamische Systeme
- Mathematik | Informatik Mathematik Mathematische Analysis Differentialrechnungen und -gleichungen
- Mathematik | Informatik Mathematik Mathematik Allgemein
Weitere Infos & Material
I The Beginning.- II Classical Background.- III Birkhoff Coordinates.- IV Perturbed KdV Equations.- V The KAM Proof.- VI Kuksin’s Lemma.- VII Background Material.- VIII Psi-Functions and Frequencies.- IX Birkhoff Normal Forms.- X Some Technicalities.- References.- Notations.