Buch, Deutsch, 317 Seiten, HC runder Rücken kaschiert, Format (B × H): 160 mm x 241 mm, Gewicht: 670 g
Reihe: VDI-Buch
Verfahren, Operatoren und Hinweise für die Praxis
Buch, Deutsch, 317 Seiten, HC runder Rücken kaschiert, Format (B × H): 160 mm x 241 mm, Gewicht: 670 g
Reihe: VDI-Buch
ISBN: 978-3-540-66413-0
Verlag: Springer Berlin Heidelberg
Evolutionäre Algorithmen als Optimierungsverfahren bieten vielfältige Anwendungsmöglichkeiten für ingenieurtechnische Lösungen industrieller Aufgaben. Dieses Buch dient in seiner Aufbereitung als praxisnahes Nachschlagewerk. In anwendungsorientierter Art und Weise werden, von einer einfachen Struktur Evolutionärer Algorithmen ausgehend, grundlegende Bestandteile, Verfahren, Operatoren und Erweiterungen beschrieben und in ihren Anwendungsmöglich- keiten analysiert. Durch die ausführliche Darstellung mehrerer ausgewählter Praxisbeispiele wird ein Einblick in die Anwendung Evolutionärer Algorithmen gegeben. Für den Einsatz in der Praxis ist dies von unschätzbarem Wert. Die dem Buch beiliegende Toolbox für Matlab bietet einen guten Einstieg in die Arbeit mit Evolutionären Algorithmen und kann sofort für die Lösung eigener Praxisprobleme genutzt werden. Der Benutzer erhält neben dem notwendigen Grundwissen ein wertvolles Arbeitsmittel an die Hand.
Zielgruppe
Professional/practitioner
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Algebra Homologische Algebra
- Mathematik | Informatik EDV | Informatik Professionelle Anwendung Computer-Aided Design (CAD)
- Technische Wissenschaften Elektronik | Nachrichtentechnik Elektronik Robotik
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Software Engineering Objektorientierte Softwareentwicklung
- Technische Wissenschaften Technik Allgemein Computeranwendungen in der Technik
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Computeranwendungen in der Mathematik
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Computeranwendungen in Wissenschaft & Technologie
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
Weitere Infos & Material
1 Einleitung.- 2 Struktur und Aufbau Evolutionärer Algorithmen.- 3 Grundlegende Verfahren und Operatoren.- 3.1 Fitneßzuweisung.- 3.2 Selektion.- 3.3 Rekombination.- 3.4 Mutation.- 3.5 Wiedereinfügen (Reinsertion).- 3.6 Initialisierung der Individuen.- 3.7 Abbruchkriterien.- 3.8 Zusammenfassung.- 4 Populationen, verschiedene Strategien und Konkurrenz.- 4.1 Klassifikation von Populationsmodellen.- 4.2 Globales Modell.- 4.3 Lokales Modell.- 4.4 Regionales Modell.- 4.5 Anwendung verschiedener Strategien.- 4.6 Konkurrierende Unterpopulationen.- 4.7 Zusammenfassung.- 5 Visualisierung und Optimierung.- 5.1 Systematisierung der Visualisierung von EA.- 5.2 Globale Eigenschaften einer Population.- 5.3 Lokale Eigenschaften einer Population.- 5.4 Hochdimensionale Visualisierung.- 5.5 Eigenschaften der Zielfunktion.- 5.6 Protokollierung von Daten und Ergebnissen.- 5.7 Zusammenfassung und Ausblick.- 6 Genetic and Evolutionary Algorithm Toolbox for Matlab.- 6.1 Aufbau und Struktur der GEATbx.- 6.2 Anwenderschnittstelle—Scriptfunktionen.- 6.3 Vordefinierte Algorithmen—Toolboxfunktionen.- 6.4 Zentralfunktion.- 6.5 Zielfunktionen und Beispiele.- 6.6 Einbeziehung problemspezifischen Wissens.- 6.7 Dokumentation.- 6.8 Zusammenfassung und Ausblick.- 7 Kombination von Operatoren zu Evolutionären Algorithmen.- 7.1 Allgemein einstellbare Verfahren und Operatoren.- 7.2 Global orientierte Parameteroptimierung.- 7.3 Lokal orientierte Parameteroptimierung.- 7.4 Parameteroptimierung binärer Variablen.- 7.5 Kombinatorische Optimierung.- 7.6 Parameteroptimierung von Variablen verschiedener Repräsentation.- 7.7 Zusammenfassung.- 8 Anwendung Evolutionärer Algorithmen auf Praxisprobleme.- 8.1 Vorgehen bei der Lösung von Optimierungsaufgaben.- 8.2 Optimierung mehrdimensionaler Funktionen.- 8.3 Parameteridentifikation eines Dieselmotormodells.- 8.4 Optimierung der Parameter eines Reglers (Fahrzeuglenkung).- 8.5 Steuerung eines komplexen Systems (Gewächshausklima).- 8.6 Zusammenfassung.- 9 Schlußbetrachtungen.- 9.1 Zusammenfassung.- 9.2 Ausblick.- A. 1 Historische Entwicklung Evolutionärer Algorithmen.- A.1.1 Erste Arbeiten zu Evolutionären Algorithmen.- A.1.2 Evolutionäre Programmierung.- A.1.3 Evolutionsstrategien.- A.1.4 Genetische Algorithmen.- A.1.5 Evolutionäre Algorithmen heute.- A.2 Gewächshaus- und Pflanzenmodell.- A.2.1 Zustandsgieichungen des Gewächshauses.- A.2.2 Zustandsgieichungen des Pflanzenmodells (Paprika).- A.2.3 Biomasse und Gewinn.- A.2.4 Beschränkungen.- Evolutionäre Algorithmen und Optimierung.- Kombinatorische Optimierung (TSP, Scheduling).- Behandlung von Populationen—Parallele Modelle.- Visualisierung.- Polyploidie bei Evolutionären Algorithmen.- Biologie, Genetik und Populationsgenetik.- Pflanzenwachstum und Gewächshaus.