Popa / Pricop | The Center and Focus Problem | Buch | 978-1-032-01725-9 | sack.de

Buch, Englisch, 226 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 511 g

Reihe: Chapman & Hall/CRC Monographs and Research Notes in Mathematics

Popa / Pricop

The Center and Focus Problem

Algebraic Solutions and Hypotheses
1. Auflage 2021
ISBN: 978-1-032-01725-9
Verlag: Chapman and Hall/CRC

Algebraic Solutions and Hypotheses

Buch, Englisch, 226 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 511 g

Reihe: Chapman & Hall/CRC Monographs and Research Notes in Mathematics

ISBN: 978-1-032-01725-9
Verlag: Chapman and Hall/CRC


The Center and Focus Problem: Algebraic Solutions and Hypotheses, M. N. Popa and V.V. Pricop, ISBN: 978-1-032-01725-9 (Hardback)

This book focuses on an old problem of the qualitative theory of differential equations, called the Center and Focus Problem. It is intended for mathematicians, researchers, professors and Ph.D. students working in the field of differential equations, as well as other specialists who are interested in the theory of Lie algebras, commutative graded algebras, the theory of generating functions and Hilbert series. The book reflects the results obtained by the authors in the last decades.

A rather essential result is obtained in solving Poincaré's problem. Namely, there are given the upper estimations of the number of Poincaré-Lyapunov quantities, which are algebraically independent and participate in solving the Center and Focus Problem that have not been known so far. These estimations are equal to Krull dimensions of Sibirsky graded algebras of comitants and invariants of systems of differential equations.

Popa / Pricop The Center and Focus Problem jetzt bestellen!

Zielgruppe


Postgraduate and Professional


Autoren/Hrsg.


Weitere Infos & Material


1. Lie Algebra Of Operators Of Centro-Affine Group Representation In The Coefficient Space Of Polynomial Differential Systems 2. Differential Equations For Centro-Affine Invariants And Comitants Of Differential Systems And Their Applications 3. Generating Functions And Hilbert Series For Sibirsky Graded Algebras Of Comitants And Invariants Of Differential Systems 4. Hilbert Series For Sibirsky Algebras And Krull Dimension For Them 5. About The Center And Focus Problem 6. On The Upper Bound Of The Number Of Algebraically Independent Focus Quantities That Take Part In Solving The Center And Focus Problem For The System s(1,m1,…,m`) 7. On The Upper Bound Of The Number Of Algebraically Independent Focus Quantities That Take Part In Solving The Center And Focus Problem For Lyapunov System. Bibliography Appendixes


Popa Mihail Nicolae holds a Ph.D. from Gorky University (now Nizhny Novgorod, Russia). He has served as Director and Deputy Director of Vladimir Andrunachievici Institute of Mathematics and Computer Science (IMCS)) in the Laboratory of Differential Equations. He is Professor at the State University of Tiraspol (based in Chisinau). His scientific interests are related to the invariant processes in the qualitative theory of differential equations, Lie algebras and commutative graded algebras, generating functions and Hilbert series, orbit theory, andLyapunov stability theory.

Pricop Victor Vasile holds a Ph.D. from Vladimir Andrunachievici Institute of Mathematics and Computer Science. He is professor at the State Institute of International Relations of Moldova. Victor Pricop's scientific interests are related to Lie algebras and graded algebras of invariants and comitants, generating functions and Hilbert series, and applications of algebras to polynomial differential systems.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.