Poteet / Kao | Natural Language Processing and Text Mining | Buch | 978-1-84628-175-4 | sack.de

Buch, Englisch, 265 Seiten, HC runder Rücken kaschiert, Format (B × H): 160 mm x 241 mm, Gewicht: 1260 g

Poteet / Kao

Natural Language Processing and Text Mining


1. Auflage. 2006
ISBN: 978-1-84628-175-4
Verlag: Springer

Buch, Englisch, 265 Seiten, HC runder Rücken kaschiert, Format (B × H): 160 mm x 241 mm, Gewicht: 1260 g

ISBN: 978-1-84628-175-4
Verlag: Springer


The topic this book addresses originated from a panel discussion at the 2004 ACM SIGKDD (Special Interest Group on Knowledge Discovery and Data Mining) Conference held in Seattle, Washington, USA. We the editors or- nized the panel to promote discussion on how text mining and natural l- guageprocessing,tworelatedtopicsoriginatingfromverydi?erentdisciplines, can best interact with each other, and bene?t from each other’s strengths. It attracted a great deal of interest and was attended by 200 people from all over the world. We then guest-edited a special issue of ACM SIGKDD Exp- rations on the same topic, with a number of very interesting papers. At the same time, Springer believed this to be a topic of wide interest and expressed an interest in seeing a book published. After a year of work, we have put - gether 11 papers from international researchers on a range of techniques and applications. We hope this book includes papers readers do not normally ?nd in c- ference proceedings, which tend to focus more on theoretical or algorithmic breakthroughs but are often only tried on standard test data. We would like to provide readers with a wider range of applications, give some examples of the practical application of algorithms on real-world problems, as well as share a number of useful techniques.
Poteet / Kao Natural Language Processing and Text Mining jetzt bestellen!

Zielgruppe


Professional/practitioner


Autoren/Hrsg.


Weitere Infos & Material


Overview.- Extracting Product Features and Opinions from Reviews.- Extracting Relations from Text: From Word Sequences to Dependency Paths.- Mining Diagnostic Text Reports by Learning to Annotate Knowledge Roles.- A Case Study in Natural Language Based Web Search.- Evaluating Self-Explanations in iSTART: Word Matching, Latent Semantic Analysis, and Topic Models.- Textual Signatures: Identifying Text-Types Using Latent Semantic Analysis to Measure the Cohesion of Text Structures.- Automatic Document Separation: A Combination of Probabilistic Classification and Finite-State Sequence Modeling.- Evolving Explanatory Novel Patterns for Semantically-Based Text Mining.- Handling of Imbalanced Data in Text Classification: Category-Based Term Weights.- Automatic Evaluation of Ontologies.- Linguistic Computing with UNIX Tools.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.