Pozzi / Fersini / Messina | Sentiment Analysis in Social Networks | Buch | 978-0-12-804412-4 | sack.de

Buch, Englisch, 284 Seiten, Format (B × H): 195 mm x 233 mm, Gewicht: 610 g

Pozzi / Fersini / Messina

Sentiment Analysis in Social Networks


Erscheinungsjahr 2016
ISBN: 978-0-12-804412-4
Verlag: Elsevier Science & Technology

Buch, Englisch, 284 Seiten, Format (B × H): 195 mm x 233 mm, Gewicht: 610 g

ISBN: 978-0-12-804412-4
Verlag: Elsevier Science & Technology


The aim of Sentiment Analysis is to define automatic tools able to extract subjective information from texts in natural language, such as opinions and sentiments, in order to create structured and actionable knowledge to be used by either a decision support system or a decision maker. Sentiment analysis has gained even more value with the advent and growth of social networking.

Sentiment Analysis in Social Networks begins with an overview of the latest research trends in the field. It then discusses the sociological and psychological processes underling social network interactions. The book explores both semantic and machine learning models and methods that address context-dependent and dynamic text in online social networks, showing how social network streams pose numerous challenges due to their large-scale, short, noisy, context- dependent and dynamic nature.

Further, this volume:

- Takes an interdisciplinary approach from a number of computing domains, including natural language processing, machine learning, big data, and statistical methodologies
- Provides insights into opinion spamming, reasoning, and social network analysis
- Shows how to apply sentiment analysis tools for a particular application and domain, and how to get the best results for understanding the consequences
- Serves as a one-stop reference for the state-of-the-art in social media analytics

Pozzi / Fersini / Messina Sentiment Analysis in Social Networks jetzt bestellen!

Weitere Infos & Material


Chapter 1: Challenges of Sentiment Analysis in Social Networks: An Overview

Chapter 2: Beyond Sentiment: How Social Network Analytics Can Enhance Opinion Mining and Sentiment Analysis

Chapter 3: Semantic Aspects in Sentiment Analysis

Chapter 4: Linked Data Models for Sentiment and Emotion Analysis in Social Networks

Chapter 5: Sentic Computing for Social Network Analysis

Chapter 6: Sentiment Analysis in Social Networks: A Machine Learning Perspective

Chapter 7: Irony, Sarcasm, and Sentiment Analysis

Chapter 8: Suggestion Mining From Opinionated Text

Chapter 9: Opinion Spam Detection in Social Networks

Chapter 10: Opinion Leader Detection

Chapter 11: Opinion Summarization and Visualization

Chapter 12: Sentiment Analysis With SpagoBI

Chapter 13: SOMA: The Smart Social Customer Relationship Management Tool: Handling Semantic Variability of Emotion Analysis With Hybrid Technologies

Chapter 14: The Human Advantage: Leveraging the Power of Predictive Analytics to Strategically Optimize Social Campaigns

Chapter 15: Price-Sensitive Ripples and Chain Reactions: Tracking the Impact of Corporate Announcements With Real-Time Multidimensional Opinion Streaming

Chapter 16: Conclusion and Future Directions


Liu, Bing
Dr Bing Liu is an Associate Professor at the College of Agriculture, Nanjing Agricultural University, China. He received his PhD in Information Agriculture in 2016 from Nanjing Agricultural University. His research areas include extreme climate effects on crop growth, yield, and quality; agricultural systems modelling; and climate change impact assessment and adaptation.

Fersini, Elisabetta
Dr. Elisabetta Fersini is currently a postdoctoral research fellow at the University of Milano - Bicocca (Italy). Her research activity is mainly focused on statistical relational learning with particular interests in supervised and unsupervised classification. The research activity finds application to Web/Text mining, Sentiment Analysis, Social Network Analysis, e-Justice and Bioinformatics. She actively participated to several national and international research projects. She has been an evaluator for international research projects and member of different scientific committees. She co-founded an academic spin-off specialized in sentiment analysis and community discovery in social networks.

Pozzi, Federico Alberto
Dr. Federico Alberto Pozzi received the Ph.D. in Computer Science at the University of Milano - Bicocca (Italy). His Ph.D. thesis is focused on Probabilistic Relational Models for Sentiment Analysis in Social Networks. His research interests primarily focus on Data Mining, Text Mining, Machine Learning, Natural Language Processing and Social Network Analysis, in particular applied to Sentiment Analysis and Community Discovery in Social Networks. He currently works at SAS Institute (Italy) as Senior Solutions Specialist - Integrated Marketing Management & Analytics.

Messina, Enza
Prof. Enza Messina is a Professor in Operations Research at the Department of Informatics Systems and Communications, University of Milano-Bicocca, where she leads the research Laboratory MIND (Models in decision making and data analysis). She holds a Ph.D. in Computational Mathematics and Operations Research from the University of Milano. Her research activity is mainly focused on decision models under uncertainty and more recently on statistical relational models for data analysis and knowledge extraction. In particular, she developed relational classi_x000C_cation and clustering models that finds applications in different domains such as systems biology, e-justice, text mining and social network analysis.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.