Buch, Englisch, 448 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 826 g
Renyi's Entropy and Kernel Perspectives
Buch, Englisch, 448 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 826 g
Reihe: Information Science and Statistics
ISBN: 978-1-4614-2585-4
Verlag: Springer
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz
- Technische Wissenschaften Elektronik | Nachrichtentechnik Nachrichten- und Kommunikationstechnik
- Interdisziplinäres Wissenschaften Wissenschaften: Forschung und Information Informationstheorie, Kodierungstheorie
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Informationstheorie, Kodierungstheorie
Weitere Infos & Material
Information Theory, Machine Learning, and Reproducing Kernel Hilbert Spaces.- Renyi’s Entropy, Divergence and Their Nonparametric Estimators.- Adaptive Information Filtering with Error Entropy and Error Correntropy Criteria.- Algorithms for Entropy and Correntropy Adaptation with Applications to Linear Systems.- Nonlinear Adaptive Filtering with MEE, MCC, and Applications.- Classification with EEC, Divergence Measures, and Error Bounds.- Clustering with ITL Principles.- Self-Organizing ITL Principles for Unsupervised Learning.- A Reproducing Kernel Hilbert Space Framework for ITL.- Correntropy for Random Variables: Properties and Applications in Statistical Inference.- Correntropy for Random Processes: Properties and Applications in Signal Processing.