Pryds / Esposito | Metal Oxide-Based Thin Film Structures | Buch | 978-0-12-811166-6 | sack.de

Buch, Englisch, 560 Seiten, Format (B × H): 228 mm x 152 mm, Gewicht: 860 g

Pryds / Esposito

Metal Oxide-Based Thin Film Structures

Formation, Characterization and Application of Interface-Based Phenomena
Erscheinungsjahr 2017
ISBN: 978-0-12-811166-6
Verlag: Elsevier Science

Formation, Characterization and Application of Interface-Based Phenomena

Buch, Englisch, 560 Seiten, Format (B × H): 228 mm x 152 mm, Gewicht: 860 g

ISBN: 978-0-12-811166-6
Verlag: Elsevier Science


Metal Oxide-Based Thin Film Structures: Formation, Characterization and Application of Interface-Based Phenomena bridges the gap between thin film deposition and device development by exploring the synthesis, properties and applications of thin film interfaces.

Part I deals with theoretical and experimental aspects of epitaxial growth, the structure and morphology of oxide-metal interfaces deposited with different deposition techniques and new developments in growth methods. Part II concerns analysis techniques for the electrical, optical, magnetic and structural properties of thin film interfaces. In Part III, the emphasis is on ionic and electronic transport at the interfaces of Metal-oxide thin films.

Part IV discusses methods for tailoring metal oxide thin film interfaces for specific applications, including microelectronics, communication, optical electronics, catalysis, and energy generation and conservation.

This book is an essential resource for anyone seeking to further their knowledge of metal oxide thin films and interfaces, including scientists and engineers working on electronic devices and energy systems and those engaged in research into electronic materials.

Pryds / Esposito Metal Oxide-Based Thin Film Structures jetzt bestellen!

Zielgruppe


Anyone seeking to further their knowledge of metal oxide thin films and interfaces, including scientists and engineers working on electronic devices and energy systems, and all those engaged in research into electronic materials.

Weitere Infos & Material


Section A Interface formation: Theoretical aspect in epitaxial growth mechanisms, structural features and defects formation 1. Epitaxy of 5d transition metal oxide thin films and heterostructures 2. Oxide superlattices by PLD: A practical guide 3. Oxide molecular beam epitaxy of complex oxide heterointerfaces 4. Electrochemical ionic interfaces

Section B Experimental: Structural and compositional characterization techniques of metal oxides interfaces 5. In situ stress measurements of metal oxide thin films 6. Plume characterization in pulsed laser deposition of metal oxide thin films 7. Photoemission of buried metal oxide interfaces 8. Functional material properties of oxide thin films probed by atomic force microscopy on the nanoscale 9. Controlled atmosphere high-temperature scanning probe microscopy (CAHT-SPM) 10. Scanning SQUID measurements of oxide interfaces

Section C Modeling and properties at the metal oxide interfaces 11. First-principle study of metal oxide thin films: Electronic and magnetic properties of confined d electrons 12. Computational study of energy materials 13. High-mobility two-dimensional electron gases at complex oxide interfaces 14. Strain and interfaces for metal oxide-based memristive devices

Section D Applications of metal oxide interfaces 15. Metal oxide thin film-based low-temperature-operating solid oxide fuel cell by interface structure control 16. Ionic conductivity of metal oxides: An essential property for all-solid-state lithium-ion batteries 17. Nanoionics and interfaces for energy and information technologies 18. Future emerging technologies based on metal oxide interfaces 19. Ferroelectric and piezoelectric oxide nanostructured films for energy harvesting applications 20. Redox-based memristive metal-oxide devices


Pryds, Nini
Nini Pryds is a Professor and head the research section 'Electrofunctional Materials' at the Department of Energy Conversion and Storage, The Technical University of Denmark (DTU), where he leads a group of about 35 researchers working in the field of magnetic refrigeration, thermoelectricity and functional oxide thin films. During the last 15 years he has played a leading role in a new cross-disciplinary research fields in the area of functional materials for energy application. In Denmark he has started and matured an area now known as magnetic refrigeration, which is based on the magnetocaloric effect. His group is recognized internationally as one of the leading group worldwide in this area. At DTU he also started the work on high temperature thermoelectric materials and his group succeeded to develop the highest zT p-type oxide materials reported so far. His group has developed a thermoelectric oxide module, which currently holds the highest efficiency oxide module. His interest includes also the area of epitaxial growth of complex oxides, which include materials physics of complex oxides. The most exciting result of his group is the creation of a metallic interface between amorphous oxide films and crystalline SrTiO3 (STO) controlled by chemical redox reactions at oxide interfaces. His group has also showed for the first time a new interface system, which exhibits electron mobilities greater than 100,000 cm2V-1s-1 at 2 K. An original concept of modulation-doped complex oxide interfaces by charge transfer which lead to the observation the quantum Hall effect at these oxide interfaces was developed in his group.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.