Buch, Englisch, Band 73, 236 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1170 g
Reihe: Progress in Nonlinear Differential Equations and Their Applications
Buch, Englisch, Band 73, 236 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1170 g
Reihe: Progress in Nonlinear Differential Equations and Their Applications
ISBN: 978-3-7643-8144-8
Verlag: Springer
Maximum principles are bedrock results in the theory of second order elliptic equations. This principle, simple enough in essence, lends itself to a quite remarkable number of subtle uses when combined appropriately with other notions. Intended for a wide audience, the book provides a clear and comprehensive explanation of the various maximum principles available in elliptic theory, from their beginning for linear equations to recent work on nonlinear and singular equations.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Mathematische Analysis Harmonische Analysis, Fourier-Mathematik
- Mathematik | Informatik Mathematik Mathematische Analysis Differentialrechnungen und -gleichungen
- Mathematik | Informatik Mathematik Mathematische Analysis Vektoranalysis, Physikalische Felder
- Mathematik | Informatik Mathematik Mathematische Analysis Funktionalanalysis
Weitere Infos & Material
and Preliminaries.- Tangency and Comparison Theorems for Elliptic Inequalities.- Maximum Principles for Divergence Structure Elliptic Differential Inequalities.- Boundary Value Problems for Nonlinear Ordinary Differential Equations.- The Strong Maximum Principle and the Compact Support Principle.- Non-homogeneous Divergence Structure Inequalities.- The Harnack Inequality.- Applications.