Pun / Zhang | Multimodal Remote Sensing Fusion and Classification | Buch | 978-0-443-29152-4 | sack.de

Buch, Englisch, 320 Seiten, Format (B × H): 191 mm x 235 mm

Pun / Zhang

Multimodal Remote Sensing Fusion and Classification

Algorithms and Applications
Erscheinungsjahr 2025
ISBN: 978-0-443-29152-4
Verlag: Elsevier Science

Algorithms and Applications

Buch, Englisch, 320 Seiten, Format (B × H): 191 mm x 235 mm

ISBN: 978-0-443-29152-4
Verlag: Elsevier Science


Multimodal Remote Sensing Data Fusion for Classification: Algorithms and Applications provides a foundation for Earth observation data fusion using multimodal remote sensing, offering cutting-edge algorithms and practical applications. Through detailed analysis and case studies, the book equips readers with the knowledge and tools to utilize multimodal remote sensing data fusion to better understand Earth's dynamic processes and promote sustainable solutions in the classification and mapping of land cover and land use, and monitoring environmental change. Multimodal Remote Sensing Data Fusion for Classification: Algorithms and Applications provides Masters and Doctorate students, scientists and professionals in remote sensing, geography and Earth sciences with a foundation in integrating and analyzing multimodal remote sensing data.

Pun / Zhang Multimodal Remote Sensing Fusion and Classification jetzt bestellen!

Weitere Infos & Material


1. Understanding Multimodal Remote Sensing
2. Multimodal Data Processing
3. Fusion Techniques for Multimodal Remote Sensing
4. Multisensor Fusion
5. Classification Algorithms for Multimodal Remote Sensing
6. Change Detection and Monitoring
7. Applications in Carbon Neutrality
8. Applications in Disaster Monitoring
9. Applications in Urban Sensing for Smart Cities
10. Future Perspectives and Emerging Technologies


Zhang, Xiaokang
Prof. Xiaokang Zhang is currently a specially-appointed Professor with the School of Information Science and Engineering, Wuhan University of Science and Technology, Wuhan. He has authored or coauthored more than 20 scientific publications in international journals and conferences. His research interests include remote sensing image analysis, computer vision, and deep learning. Dr. Zhang serves as a Reviewer for more than 10 renowned international journals, such as the IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, Information Fusion, and the IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING.

Pun, Man-On
Man-On Pun is presently an Associate Professor at the School of Science and Engineering, CUHKSZ. Previously, he served as a Post-Doctoral Research Associate at Princeton University in Princeton, NJ, USA, from 2006 to 2008. He also held research positions at Huawei in Milford, NJ, USA, the Mitsubishi Electric Research Labs (MERL) in Boston, MA, USA, and Sony in Tokyo, Japan.

His research encompasses artificial intelligence (AI), Internet of Things (IoT), and the application of machine learning in communications and satellite remote sensing. Prof. Pun has been recognized with best paper awards from the IEEE Vehicular Technology Conference 2006 Fall, the IEEE International Conference on Communication 2008, and the IEEE Infocom'09. Additionally, he has taken on the role of Founding Chair for the IEEE Joint Signal Processing Society-Communications Society Chapter in Shenzhen and served as an Associate Editor for the IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS from 2010 to 2014.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.