E-Book, Englisch, 560 Seiten
Qian Environmental and Ecological Statistics with R, Second Edition
2. Auflage 2016
ISBN: 978-1-4987-2873-7
Verlag: CRC Press
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
E-Book, Englisch, 560 Seiten
Reihe: Chapman & Hall/CRC Applied Environmental Statistics
ISBN: 978-1-4987-2873-7
Verlag: CRC Press
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
This new edition provides a substantial update, with a revised introductory chapter that better sets the scene for the role that statistics can play in the field. It includes new chapters on data manipulation and Bayesian statistics and a new final chapter on evaluating the use of statistics in published work. The R package supplementing the book has been expanded to include code for all the methods and examples.
Autoren/Hrsg.
Fachgebiete
- Geowissenschaften Geographie | Raumplanung Geographie: Sachbuch, Reise
- Geowissenschaften Umweltwissenschaften Umwelttechnik
- Naturwissenschaften Biowissenschaften Biowissenschaften Biowissenschaften, Biologie: Sachbuch, Naturführer
- Mathematik | Informatik Mathematik Stochastik
- Technische Wissenschaften Umwelttechnik | Umwelttechnologie Umwelttechnik
- Naturwissenschaften Biowissenschaften Biowissenschaften Ökologie
Weitere Infos & Material
Table of Contents for the first edition:
Introduction. The Everglades Example. Statistical Issues. R. What Is R? Getting Started with R. The R Commander. Statistical Assumptions. The Normality Assumption. The Independence Assumption. The Constant Variance Assumption. Exploratory Data Analysis. From Graphs to Statistical Thinking. Statistical Inference. Estimation of Population Mean and Confidence Interval. Hypothesis Testing. A General Procedure. Nonparametric Methods for Hypothesis Testing. Significance Level alpha, Power 1 - beta, and p-Value. One-Way Analysis of Variance. Examples. STATISTICAL MODELING. Linear Models. ANOVA as a Linear Model. Simple and Multiple Linear Regression Models. General Considerations in Building a Predictive Model. Uncertainty in Model Predictions. Two-Way ANOVA. Nonlinear Models. Nonlinear Regression. Smoothing. Smoothing and Additive Models. Classification and Regression Tree. The Willamette River Example. Statistical Methods. Comments. Generalized Linear Model. Logistic Regression. Model Interpretation. Diagnostics. Seed Predation by Rodents: A Second Example of Logistic Regression. Poisson Regression Model. Generalized Additive Models. ADVANCED STATISTICAL MODELING. Simulation for Model Checking and Statistical Inference. Simulation. Summarizing Linear and Nonlinear Regression Using Simulation. Simulation Based on Resampling. Multilevel Regression. Multilevel Structure and Exchangeability. Multilevel ANOVA. Multilevel Linear Regression. Generalized Multilevel Models. References. Index.