E-Book, Englisch, 133 Seiten, eBook
Reihe: Synthesis Lectures on Learning, Networks, and Algorithms
Qin / Tang / Li Reinforcement Learning in the Ridesharing Marketplace
1. Auflage 2024
ISBN: 978-3-031-59640-7
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 133 Seiten, eBook
Reihe: Synthesis Lectures on Learning, Networks, and Algorithms
ISBN: 978-3-031-59640-7
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book provides a comprehensive overview of reinforcement learning for ridesharing applications. The authors first lay out the fundamentals of the ridesharing system architectures and review the basics of reinforcement learning, including the major applicable algorithms. The book describes the research problems associated with the various aspects of a ridesharing system and discusses the existing reinforcement learning approaches for solving them. The authors survey the existing research on each problem, and then examine specific case studies. The book also includes a review of two of methods closely related to reinforcement learning: approximate dynamic programming and model-predictive control.
Zielgruppe
Professional/practitioner
Autoren/Hrsg.
Weitere Infos & Material
Introduction.- Ridesharing.- Reinforcement Learning Prime.- Pricing & Incentives.- Online Matching.- Vehicle Repositioning.- Routing.- Ride-pooling.- Related Methods.- Open Resources.- Challenges and Opportunities.- Closing Remarks.