Buch, Englisch, 202 Seiten, Format (B × H): 154 mm x 233 mm, Gewicht: 366 g
Reihe: Use R!
ISBN: 978-0-387-98184-0
Verlag: Springer
Scientists often collect samples of curves and other functional observations, and develop models where parameters are also functions. This volume in the UseR! Series is aimed at a wide range of readers, and especially those who would like apply these techniques to their research problems. It complements , Second Edition and by providing computer code in both the R and Matlab languages for a set of data analyses that showcase functional data analysis techniques. The authors make it easy to get up and running in new applications by adapting the code for the examples, and by being able to access the details of key functions within these pages. This book is accompanied by additional web-based support at http://www.functionaldata.org for applying existing functions and developing new ones in either language. The companion 'fda' package for R includes script files to reproduce nearly all the examples in the book including all but one of the 76 figures.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Naturwissenschaften Biowissenschaften Biowissenschaften
- Mathematik | Informatik Mathematik Mathematische Analysis Harmonische Analysis, Fourier-Mathematik
- Mathematik | Informatik EDV | Informatik Informatik
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Medizin, Gesundheitswesen Public Health, Gesundheitsmanagement, Gesundheitsökonomie, Gesundheitspolitik
- Wirtschaftswissenschaften Betriebswirtschaft Bereichsspezifisches Management Außenhandel
- Mathematik | Informatik Mathematik Stochastik Mathematische Statistik
- Mathematik | Informatik EDV | Informatik Business Application Mathematische & Statistische Software
- Sozialwissenschaften Psychologie Psychologie / Allgemeines & Theorie Experimentelle Psychologie
- Mathematik | Informatik Mathematik Mathematische Analysis Funktionalanalysis
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Datenkompression, Dokumentaustauschformate
Weitere Infos & Material
to Functional Data Analysis.- Essential Comparisons of the Matlab and R Languages.- How to Specify Basis Systems for Building Functions.- How to Build Functional Data Objects.- Smoothing: Computing Curves from Noisy Data.- Descriptions of Functional Data.- Exploring Variation: Functional Principal and Canonical Components Analysis.- Registration: Aligning Features for Samples of Curves.- Functional Linear Models for Scalar Responses.- Linear Models for Functional Responses.- Functional Models and Dynamics.