Buch, Englisch, 264 Seiten, Format (B × H): 173 mm x 246 mm, Gewicht: 635 g
Technology, New Concepts & Policy
Buch, Englisch, 264 Seiten, Format (B × H): 173 mm x 246 mm, Gewicht: 635 g
ISBN: 978-0-415-62110-6
Verlag: CRC Press
This book provides an overview of the current state of affairs in the field of solar power engineering from a global perspective. In four parts, this well-researched volume informs about (1) established solar PV (photovoltaic) technologies; (2) third-generation PV technologies based on new materials with potential for low-cost large-scale production; (3) solar cell technology based on new (third-generation) concepts such as quantum dot solar cells and nano wire solar cells using silicon and compound semiconductors; and (4) economic implications and effects, as well as policies and incentives in various countries of the world involved with solar energy implementation. Besides manufacturing facts and implementation issues, special emphasis is placed on the implications of policy measures in countries with good PV activity, such as Japan, China, India, Germany, Spain, France, Italy, the United States, and Canada. The volume is intended as a reference text for a global audience of advanced students, R& D and industry professionals, as well as investors and policy-makers with fundamental knowledge of photovoltaic technology.
Autoren/Hrsg.
Fachgebiete
- Sozialwissenschaften Politikwissenschaft Regierungspolitik Kultur-, Wissenschafts- & Technologiepolitik
- Wirtschaftswissenschaften Wirtschaftssektoren & Branchen Energie- & Versorgungswirtschaft Energiewirtschaft: Alternative & Erneuerbare Energien
- Technische Wissenschaften Energietechnik | Elektrotechnik Solarenergie, Photovoltaik
- Wirtschaftswissenschaften Volkswirtschaftslehre Industrie- und Technologiepolitik
Weitere Infos & Material
1 Introduction
2 Silicon solar cells
2.1 Introduction
2.2 Features of standard c-silicon cells
2.3 Progress in cell efficiency
2.4 Mono-crystalline Si solar cells
2.4.1 Buried contact solar cells
2.4.2 Passivated emitter, rear locally diffused (PERL) cell
2.4.3 HIT solar cell
2.4.4 Interdigitated back contact (IBC) solar cells
2.4.5 Industrial mono-Si solar cells
2.5 Multi (poly)-crystalline silicon solar cells
2.5.1 EWT and MWT polycrystalline Si cells
2.5.2 Polycrystalline buried contact solar cells
2.5.3 EFG and SRG techniques
2.5.4 PLUTO multi-crystalline Si modules
2.6 Materials and processing
2.6.1 Al2O3 deposition for surface passivation
2.6.2 Inkjet technology for cell fabrication
2.7 Future for crystalline silicon solar cells
2.8 Amorphous silicon solar cells
2.8.1 Overview of technology development
2.8.2 a-Si:H thin film solar cells
2.8.3 Microcrystalline (µc)-Silicon thin film solar cells
2.8.4 Tandem and multi-junction a-Si:H cells
2.8.5 Fabrication of a-Si thin film modules
2.8.6 a-Si/µc-Si tandem solar cell
2.8.7 Turnkey systems for a-Si solar cell module production
2.9 Improving efficiency of Si TF solar cells
3 Polycrystalline CIGS and CdTe thin film solar cells
3.1 Introduction
3.2 Highlights of CIGS and CdTe technologies
3.3 CIGS thin film solar cells
3.3.1 Absorber layer deposition
3.3.2 State-of-the-art technologies
3.3.3 Band gap engineering of absorber (CIGS) layer
3.3.4 Novel absorber layers
3.3.5 Alternative buffer layers
3.3.6 Fabrication of CIGSS modules
3.3.7 Flexible CIGS solar devices
3.3.8 Vacuum-free deposition
3.4 CdTe thin film solar cells
3.4.1 CdTe cell structure elements
3.4.2 Standard module fabrication
3.4.3 Industrial CdTe modules
3.4.4 Flexible CdTe solar cells
3.5 Challenges to be addressed
3.6 Polycrystalline TF multi junction solar cells
3.7 Manufacturing cost of thin film modules
4 Organic and dye sensitized solar cells
4.1 Introduction
4.2 Configuration & principle of organic solar cell
4.3 Types of organic solar cells
4.3.1 Single layer organic solar cells
4.3.2 Bi-layer organic solar cells
4.3.3 Bulk hetero junction solar cells (BHJ cells)
4.4 Dye-sensitized nanostructured solar cells
4.4.1 Configuration of the cell
4.4.2 Performance of DSSCs
4.4.3 Dye sensitized solar modules
4.5 Lifetimes of polymer cells
4.6 Manufacturing status of DSC and OPV cells
4.7 Improving efficiencies
4.8 Nano-TiO2 dye/CIGS tandem solar cells
5 High-efficiency solar devices
5.1 Introduction
5.2 III-V multi junction solar cells
5.2.1 Introduction
5.2.2 Basic principles of multi-junction solar cells
5.2.3 Fabrication of MJ solar cells
5.2.4 Future design considerations
5.2.5 Metamorphic (lattice-mismatched) solar cells
5.2.6 Four-junction (terrestrial) solar cells
5.2.7 Five- and six-junction solar cells
5.2.8 Prospects for multi junction solar cells
5.3 High concentration PV technology (HCPV)
5.3.1 Introduction
5.3.2 Classification of CPV
5.3.3 Merits of CPV
5.3.4 Status of CPV
5.3.5 Overview of HCPV modules
5.3.6 Research and development
5.3.7 Installations with HCPV modules
5.3.8 Cost benefits
5.3.9 CPV and cogeneration
6 New concepts based solar cells
6.1 Quantum dot solar cells
6.1.1 Silicon-QD solar cell
6.1.2 III-V multi junction QD solar cells
6.2 Nanowire (NW) solar cells
6.2.1 Silicon NW solar cells
6.2.2 Compound semiconductor NW solar cells
6.3 NW-polymer hybrid solar cells
6.3.1 InP nanowire – polymer (P3HT) hybrid solar cell
6.3.2 Microcrystalline silicon nanorods/P3HT hybrid solar Cells
6.3.3 TiO2 nanotube arrays in DSCs
6.4 Third-generation concepts under development
6.4.1 Hot Carrier solar cells
6.4.2 Plasmonic photovoltaics
6.4.3 Nanostructured materials for thin film solar cells
6.5 Crystalline silicon on glass