Riccio / Irace / Breglio | Formation of Solid-State Structures | Buch | 978-3-0364-0632-9 | sack.de

Buch, Englisch, 238 Seiten, Format (B × H): 170 mm x 240 mm, Gewicht: 540 g

Riccio / Irace / Breglio

Formation of Solid-State Structures


Erscheinungsjahr 2024
ISBN: 978-3-0364-0632-9
Verlag: Trans Tech Publications

Buch, Englisch, 238 Seiten, Format (B × H): 170 mm x 240 mm, Gewicht: 540 g

ISBN: 978-3-0364-0632-9
Verlag: Trans Tech Publications


The development of solid-state semiconductor structures is at the forefront of technological innovation, driving advancements across various applications of microelectronics and high-power devices. The formation and processing of semiconductor solid-state structures involve a series of sophisticated and precision technologies that improve functionality and provide integration of finished components into complex circuits. This special edition is an essential resource for engineers and researchers involved in developing and applying semiconductor technologies.
Riccio / Irace / Breglio Formation of Solid-State Structures jetzt bestellen!

Weitere Infos & Material


Preface
Free-Standing 3C-SiC P-Type Doping by Al Ion Implantation
TEM Investigation on High Dose Al Implanted 4H-SiC Epitaxial Layer
Evolution of the Substitutional Fraction on Post-Implantation Annealing in Al/4H-SiC Systems
Low Resistivity Aluminum Doped Layers Formed Using High Dose High Temperature Implants and Laser Annealing
Improving HfO2 Thick Films for SiC Power Devices by Si, Y and La Doping
Dopant Activation Comparison in Phosphorus and Nitrogen Implanted 4H-Silicon Carbide
Transient-Enhanced Diffusion of Implanted Aluminum in 4H-SiC
Calibration of Aluminum Ion Implantation Monte-Carlo Model for TCAD Simulations in 4H-SiC
Prediction of Contact Resistance of 4H–SiC by Machine Learning Using Optical Microscope Images after Laser Doping
The Effect of Nitrogen Plasma Treatment Process on Ohmic Contact Formation to N-Type 4H-SiC
Ni/4H-SiC Ohmic Contact Formation Using Multipulse Nanosecond Laser Annealing
Lift-Off Process for Patterning of a Sputter-Deposited Thick Metal Stack for High Temperature Applications on 4H-SiC
Plasma Treatment after NiSi-Based Ohmic Contact Formation on 4H-SiC to Enhance Adhesion of Subsequent Backside Metallization
Effect of Substrate Heating on Low Contact-Resistance Formation by Excimer Laser Doping for 4H-SiC
Nickel Ohmic Contacts Formed on 4H-SiC by UV Laser Annealing
Electrical and Structural Properties of Ohmic Contacts of SiC Diodes Fabricated on Thin Wafers
Empirical Model of Low-Ohmic Nickel-Based Contact Formation on N-Type 4H-SiC Depending on Thermal Budget
Low-Ohmic Nickel Contacts on N-Type 4H-SiC by Surface Roughness Dependent Laser Annealing Energy Density Optimization
Long Term Reliability and Deterioration Mechanisms of High-Temperature Metal Stacks on 4H-SiC
Metal Contact Processing Experiments towards Realizing 500 °C Durable RF 4H-SiC BJTs
Performance Improvement by Carbon-Dioxide Supercritical Fluid Treatment for 4H-SiC Vertical Double Diffusion MOSFETs
Hydrogen Etching Process of 4H-SiC (0001) in Limited Regions
Comparative Study of the Self-Aligned Channel Processes for 4H-SiC VDMOSFET
Demonstration of Low Interface Trap Density (~3×1011eV-1cm-2) SiC/SiO2 MOS Capacitor with Excellent Performance Using H2+NO POA Treatment for SiC Power Devices
Increasing Mobility in 4H-SiC MOSFETs with Deposited Oxide by In-Situ Nitridation of SiC Surface
Demonstrating SiC In Situ Rounded Trench Processing Technologies for Future Power Trench MOSFET Applications
High Mobility 4H-SiC P-MOSFET via Ultrathin ALD B2O3 Interlayer between SiC and SiO2
Quality Improvement of SiC Substrate Surface with Using Non-Abrasive CMP Slurry
Addition of Transition Metal Ion CMP Slurry for Forming Ultra-Flat SiC Crystal
Increasing 4H-SiC Trench Depth by Improving the Dry Etch Selectivity towards the Oxide Hard Mask
A Comparison between Different Post Grinding Processes on 4H-SiC Wafers
Influence of Active Area Etching Method on the Integrity of Gate Oxide on 4H-SiC
High-K Gate Dielectric for High-Performance SiC Power MOSFET Technology with Low Interface Trap Density, Good Oxide Lifetime (ttddb= 104s), and High Thermal Stability (= 800 °C)


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.