Riehl / Verity | Elements of ∞-Category Theory | Buch | 978-1-108-83798-9 | sack.de

Buch, Englisch, Band 194, 770 Seiten, Format (B × H): 159 mm x 232 mm, Gewicht: 1220 g

Reihe: Cambridge Studies in Advanced Mathematics

Riehl / Verity

Elements of ∞-Category Theory


Erscheinungsjahr 2022
ISBN: 978-1-108-83798-9
Verlag: Cambridge University Press

Buch, Englisch, Band 194, 770 Seiten, Format (B × H): 159 mm x 232 mm, Gewicht: 1220 g

Reihe: Cambridge Studies in Advanced Mathematics

ISBN: 978-1-108-83798-9
Verlag: Cambridge University Press


The language of 8-categories provides an insightful new way of expressing many results in higher-dimensional mathematics but can be challenging for the uninitiated. To explain what exactly an 8-category is requires various technical models, raising the question of how they might be compared. To overcome this, a model-independent approach is desired, so that theorems proven with any model would apply to them all. This text develops the theory of 8-categories from first principles in a model-independent fashion using the axiomatic framework of an 8-cosmos, the universe in which 8-categories live as objects. An 8-cosmos is a fertile setting for the formal category theory of 8-categories, and in this way the foundational proofs in 8-category theory closely resemble the classical foundations of ordinary category theory. Equipped with exercises and appendices with background material, this first introduction is meant for students and researchers who have a strong foundation in classical 1-category theory.

Riehl / Verity Elements of ∞-Category Theory jetzt bestellen!

Weitere Infos & Material


Part I. Basic 8-Category Theory: 1. 8-Cosmoi and their homotopy 2-categories; 2. Adjunctions, limits, and colimits I; 3. Comma 8-categories; 4. Adjunctions, limits, and colimits II; 5. Fibrations and Yoneda's lemma; 6. Exotic 8-cosmoi; Part II. The Calculus of Modules: 7. Two-sided fibrations and modules; 8. The calculus of modules; 9. Formal category theory in a virtual equipment; Part III. Model Independence: 10. Change-of-model functors; 11. Model independence; 12. Applications of model independence.


Riehl, Emily
Emily Riehl is an associate professor of mathematics at Johns Hopkins University. She received her PhD from the University of Chicago and was a Benjamin Peirce and NSF postdoctoral fellow at Harvard University. She is the author of Categorical Homotopy Theory (Cambridge, 2014) and Category Theory in Context (2016), and a co-author of Fat Chance: Probability from 0 to 1 (Cambridge, 2019). She and her present co-author have published ten articles over the course of the past decade that develop the new mathematics appearing in this book.

Verity, Dominic
Dominic Verity is a professor of mathematics at Macquarie University in Sydney and is a director of the Centre of Australian Category Theory. While he is a leading proponent of 'Australian-style' higher category theory, he received his PhD from the University of Cambridge and migrated to Australia in the early 1990s. Over the years he has pursued a career that has spanned the academic and non-academic worlds, working at times as a computer programmer, quantitative analyst, and investment banker. He has also served as the Chair of the Academic Senate of Macquarie University, the principal academic governance and policy body.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.