Rimmer | Biomedical Hydrogels | Buch | 978-0-08-101741-8 | sack.de

Buch, Englisch, 288 Seiten, Gewicht: 400 g

Rimmer

Biomedical Hydrogels

Biochemistry, Manufacture and Medical Applications
Erscheinungsjahr 2016
ISBN: 978-0-08-101741-8
Verlag: Elsevier Science & Technology

Biochemistry, Manufacture and Medical Applications

Buch, Englisch, 288 Seiten, Gewicht: 400 g

ISBN: 978-0-08-101741-8
Verlag: Elsevier Science & Technology


Hydrogels are very important for biomedical applications because they can be chemically manipulated to alter and control the hydrogel's interaction with cells and tissues. Their flexibility and high water content is similar to that of natural tissue, making them extremely suitable for biomaterials applications. Biomedical hydrogels explores the diverse range and use of hydrogels, focusing on processing methods and novel applications in the field of implants and prostheses.

Part one of this book concentrates on the processing of hydrogels, covering hydrogel swelling behaviour, superabsorbent cellulose-based hydrogels and regulation of novel hydrogel products, as well as chapters focusing on the structure and properties of hydrogels and different fabrication technologies. Part two covers existing and novel applications of hydrogels, including chapters on spinal disc and cartilage replacement implants, hydrogels for ophthalmic prostheses and hydrogels for wound healing applications. The role of hydrogels in imaging implants in situ is also discussed.

With its distinguished editor and international team of contributors, Biomedical hydrogels is an excellent reference for biomedical research scientists and engineers in industry and academia, as well as others involved in research in this area, such as research clinicians.
Rimmer Biomedical Hydrogels jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Part I: Processing of hydrogels

Chapter 1: Hydrogel swelling behavior and its biomedical applications

Abstract:

1.1 Basics of hydrogels

1.2 Swelling of hydrogels: water diffusion into hydrogels

1.3 Stimulus-responsive hydrogels

1.4 Examples of environment-sensitive hydrogels

1.5 Future trends

Chapter 2: Superabsorbent cellulose-based hydrogels for biomedical applications

Abstract:

2.1 Introduction

2.2 Cellulose-based hydrogels and crosslinking strategies

2.3 Hydrogel properties and thermodynamics

2.4 Applications

2.5 Conclusions

Chapter 3: Synthesis of hydrogels for biomedical applications: control of structure and properties

Abstract:

3.1 Introduction

3.2 Cross-linking of high molecular weight polymers

3.3 Copolymerization with multi-functional monomers

3.4 Multiphase hydrogels

3.5 Functional hydrogels

3.6 Conclusion

Chapter 4: Processing and fabrication technologies for biomedical hydrogels

Abstract:

4.1 Introduction

4.2 Applications

4.3 Gelation

4.4 Physical crosslinking

4.5 Photopolymerization and photopatterning

4.6 Stereolithography

4.7 Two-photon laser scanning photolithography

4.8 Processing of multicomponent hydrogels

4.9 Future trends

4.10 Acknowledgements

Chapter 5: Regulation of novel biomedical hydrogel products

Abstract:

5.1 Introduction

5.2 Regulatory jurisdictions

5.3 Regulatory frameworks

5.4 Risk-based device classification

5.5 Non-clinical testing

5.6 Clinical data and studies

5.7 Marketing authorization processes

5.8 Quality system requirements

5.9 Post-market requirements

5.10 Future trends

5.11 Sources of further information and advice

Part II: Applications of hydrogels

Chapter 6: Spinal disc implants using hydrogels

Abstract:

6.1 Introduction

6.2 Intervertebral disc

6.3 Disc implant

6.4 Conclusion

Chapter 7: Hydrogels for intraocular lenses and other ophthalmic prostheses

Abstract:

7.1 Introduction

7.2 Intraocular lenses

7.3 Vitreous substitutes

7.4 Tissue adhesives

7.5 Conclusions

7.5 Acknowledgements

Chapter 8: Cartilage replacement implants using hydrogels

Abstract:

8.1 Introduction

8.2 Historical background in cartilage repair and injury: existing therapies

8.3 First and second generation tissue engineering

8.4 Third generation tissue engineering

8.5 Future trends

Chapter 9: Hydrogels for wound healing applications

Abstract:

9.1 Introduction

9.2 Requirements of an ideal wound care system

9.3 Hydrogels for wound healing applications

9.4 Natural hydrogels for wound healing applications

9.5 Synthetic and other hydrogels for wound healing applications

9.6 Commercial dressings

9.7 Future trends

9.8 Conclusion

9.10 Appendix: list of abbreviations

Chapter 10: Imaging hydrogel implants in situ

Abstract:

10.1 Introduction

10.2 Rationale for imaging implants in situ

10.3 Imaging modalities and their advantages and disadvantages for the in situ imaging of hydrogel implants

10.4 Challenges of imaging in situ

10.5 Contrast enhancement

10.6 Characterization of implants (in vitro and in vivo)

10.7 Characterization of in vivo healing

10.8 Conclusions

10.9 Sources of further information and advice

Index


Rimmer, Steve
Steve Rimmer is a Senior Lecturer in the Department of Chemistry at Sheffield University.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.