Rizzo / Milazzo | European Workshop on Structural Health Monitoring | E-Book | sack.de
E-Book

E-Book, Englisch, Band 270, 1078 Seiten, eBook

Reihe: Lecture Notes in Civil Engineering

Rizzo / Milazzo European Workshop on Structural Health Monitoring

EWSHM 2022 - Volume 3
1. Auflage 2022
ISBN: 978-3-031-07322-9
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

EWSHM 2022 - Volume 3

E-Book, Englisch, Band 270, 1078 Seiten, eBook

Reihe: Lecture Notes in Civil Engineering

ISBN: 978-3-031-07322-9
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This volume gathers the latest advances, innovations, and applications in the field of structural health monitoring (SHM) and more broadly in the fields of smart materials and intelligent systems, as presented by leading international researchers and engineers at the 10th European Workshop on Structural Health Monitoring (EWSHM), held in Palermo, Italy on July 4-7, 2022. The volume covers highly diverse topics, including signal processing, smart sensors, autonomous systems, remote sensing and support, UAV platforms for SHM, Internet of Things, Industry 4.0, and SHM for civil structures and infrastructures. The contributions, which are published after a rigorous international peer-review process, highlight numerous exciting ideas that will spur novel research directions and foster multidisciplinary collaboration among different specialists.
Rizzo / Milazzo European Workshop on Structural Health Monitoring jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1;Preface;6
2;Organization;12
2.1;Program Chairs;12
2.2;Program Committee;12
3;Contents;13
4;Guided Waves in Structures for SHM;24
5;Numerical Investigations on the Influence of Prestress on Lamb Wave Propagation;25
5.1;1 Introduction;25
5.2;2 Modeling Approach and Mechanical Description;26
5.2.1;2.1 Modeling Approach;26
5.2.2;2.2 Mechanical Description;27
5.2.3;2.3 Dispersion Diagrams via the Eigenvalue Problem;29
5.3;3 Experimental and Numerical Results;30
5.3.1;3.1 Dispersion Diagram Without Prestress;31
5.3.2;3.2 Influence of Prestress in Experimental and Numerical Data;31
5.4;4 Conclusion and Outlook;33
5.5;References;33
6;Damage Assessment in Composite Material Using Air-Coupled Transducers;35
6.1;Abstract;35
6.2;1 Introduction;35
6.3;2 Experimental Set-Up;36
6.4;3 Non-contact ACT-Based Elastic Waves Generation;37
6.5;4 Dispersion Curves Extraction;38
6.6;5 Teflon Inserts Localization Results;39
6.6.1;5.1 Full Wavefield Results - Piezoelectric Transducer;40
6.6.2;5.2 Full Wavefield Results - Air-Coupled Transducers;40
6.7;6 Conclusions;43
6.8;Acknowledgements;44
6.9;References;44
7;A Numerical Study on Baseline-Free Damage Detection Using Frequency Steerable Acoustic Transducers;46
7.1;Abstract;46
7.2;1 Introduction;46
7.3;2 Damage Detection with Frequency Steerable Acoustic Transducers;47
7.4;3 Numerical Simulations;49
7.4.1;3.1 Numerical Model;49
7.4.2;3.2 FSAT Directivity Characteristics;49
7.4.3;3.3 Damage Scenarios;50
7.5;4 Results of Damage Detection and Localization;51
7.6;5 Conclusions and Future Plans;54
7.7;Acknowledgments;54
7.8;References;55
8;Influence of Operational and Environmental Conditions on Lamb Wave Signals;56
8.1;Abstract;56
8.2;1 Introduction;56
8.3;2 Measurement Set-Up;57
8.4;3 Evaluation of Measured Data;58
8.4.1;3.1 Temperature Effect;58
8.4.2;3.2 Damage Effect;62
8.5;4 Conclusion;64
8.6;Acknowledgment;64
8.7;References;65
9;Use of Deep Learning Techniques for Damage Localization in Aeronautical Composite Structures;66
9.1;Abstract;66
9.2;1 Introduction;66
9.3;2 Methods and Experimental Setup;67
9.3.1;2.1 Convolutional Neural Network for Distances Estimation;67
9.3.2;2.2 Damage Localization Algorithm;68
9.3.3;2.3 Experimental Setup;69
9.3.4;2.4 Additional Data Acquisition for Testing;71
9.4;3 Results;71
9.4.1;3.1 CNN Model Training;71
9.4.2;3.2 Damage Localization and Imaging Results;72
9.5;4 Conclusion;73
9.6;References;73
10;Temperature and Damage-Affected Lamb Wave Signals in a Composite Sandwich Plate;74
10.1;Abstract;74
10.2;1 Introduction;74
10.3;2 Materials and Methods;75
10.4;3 Results;76
10.4.1;3.1 Climatic Chamber;76
10.4.2;3.2 Temperature and Damage Affected Signals;78
10.4.3;3.3 Impact Damage;78
10.5;4 Discussion;81
10.6;5 Conclusion;81
10.7;Acknowledgments;81
10.8;References;81
11;Numerical Investigation of Application of Unidirectional Generation to Improve Signal Interpretation of Circumferential Guided Waves in Pipes for Defect Detection;83
11.1;Abstract;83
11.2;1 Introduction;83
11.3;2 Circumferential SH Waves and Unidirectional Generation;85
11.3.1;2.1 Circumferential SH Waves;85
11.3.2;2.2 Unidirectional Generation of SH Waves;85
11.3.3;2.3 Reflection from a Defect;86
11.4;3 Finite Element Model;87
11.5;4 Results and Discussion;88
11.6;5 Conclusion;91
11.7;Acknowledgments;91
11.8;References;91
12;Guided Waves Benchmark Dataset and Classifier Comparison;93
12.1;1 Introduction;93
12.2;2 Benchmark Dataset Description;94
12.2.1;2.1 General Description and Experimental Setup;94
12.2.2;2.2 Aircraft Specimens Fatigue Subset (Section A);94
12.2.3;2.3 Variable Environmental Conditions Subset (Section B);95
12.2.4;2.4 Composite Specimens Subset (Section C);95
12.3;3 Examples of Testing Approaches;97
12.3.1;3.1 Fatigue Specimen Classification Example;97
12.3.2;3.2 Composite Specimen Localization Example;98
12.4;4 Research Suggestions and Future of the Dataset;98
12.5;5 Summary and Conclusions;100
12.6;References;100
13;Dual Mode Inspection Using Guided Waves and Phased Array Ultrasonics from a Single Transducer;101
13.1;1 Introduction;101
13.2;2 Modal Analysis Formulation;102
13.3;3 Guided Wave Excitation with a Phased Array;104
13.4;4 Simulation Results;105
13.5;5 Experimental Results;107
13.5.1;5.1 Experimental 2DFFT;107
13.5.2;5.2 Guided Wave Scan;107
13.5.3;5.3 Phased Array Inspection;109
13.6;6 Conclusions;109
13.7;References;110
14;Enhanced Simulation of Guided Waves and Damage Localization in Composite Strips Using the Multiresolution Finite Wavelet Domain Method;111
14.1;Abstract;111
14.2;1 Introduction;111
14.3;2 Theoretical Background;113
14.3.1;2.1 Daubechies Wavelets and the Multiresolution Approximation;113
14.3.2;2.2 The Multiresolution Finite Wavelet Domain Method;114
14.3.3;2.3 High-order Layerwise Laminate Theory;115
14.4;3 Numerical Results;116
14.4.1;3.1 Composite Beam with First-order Shear Kinematic Assumptions;116
14.4.2;3.2 Composite Beam Using HLLT;117
14.5;4 Conclusions;119
14.6;References;120
15;Fully Integrated Hybrid “Piezoelectric/Fiber Optic” Acousto-Ultrasound Sensor Network (FAULSense™) SHM System;122
15.1;Abstract;122
15.2;1 Introduction;122
15.2.1;1.1 Advanced Composites in Aircraft Structures;125
15.3;2 Integrated Hybrid Structural Health Monitoring (SHM) System;125
15.4;3 FAULSense System Development and Test Results;127
15.5;4 Conclusions;130
15.6;Acknowledgements;130
15.7;References;130
16;Guided Wave-Gaussian Mixture Model for Damage Quantification Under Uncertainty;131
16.1;Abstract;131
16.2;1 Introduction;131
16.3;2 GW-GMM Based Crack Quantification Method;132
16.3.1;2.1 The GW-GMM Based Crack Quantification Process;132
16.3.2;2.2 Modeling and Migration Process of GMM;133
16.4;3 Validation on the Aircraft Lug Specimen;135
16.4.1;3.1 Experimental Setup;135
16.4.2;3.2 GW Features Extraction Under Uncertainty;136
16.4.3;3.3 Calibration Model of Crack Length with MI;136
16.4.4;3.4 Online Damage Quantitative Diagnosis Results;138
16.5;4 Conclusion;138
16.6;Acknowledgements;138
16.7;References;139
17;Damage Size Quantification Using Lamb Waves by Analytical Model Identification;141
17.1;Abstract;141
17.2;1 Introduction;141
17.3;2 Analytical Model;143
17.3.1;2.1 Actuator Model;143
17.3.2;2.2 Scattering Model;144
17.4;3 Sensor Model;147
17.5;4 Identification Algorithm;147
17.6;5 Application on Simulation Data;148
17.7;6 Conclusion;149
17.8;References;149
18;Efficient Layerwise Time-Domain Spectral Finite Element for Guided Wave Propagation Analysis of Multi-layered Panels;150
18.1;1 Introduction;150
18.2;2 Methodology;152
18.3;3 Numerical Results and Discussion;153
18.3.1;3.1 Free Vibration Analysis;153
18.3.2;3.2 Lamb Wave Propagation;154
18.3.3;3.3 Comparison of SFE with Conventional FE;157
18.3.4;3.4 Lamb Wave Propagation Under Transverse Excitation;157
18.4;4 Conclusions;158
18.5;References;159
19;A Bayesian Approach to Lamb-Wave Dispersion Curve Material Identification in Composite Plates;161
19.1;1 Introduction;161
19.2;2 Methods;163
19.2.1;2.1 Dispersion Curve Solutions for Orthotropic Media;163
19.2.2;2.2 Measuring {,};164
19.2.3;2.3 Estimating Elastic Constants;164
19.2.4;2.4 Sampling over the Posterior Distribution;165
19.3;3 Results;166
19.4;4 Conclusions and Further Work;169
19.5;References;170
20;Damage Detection Based on Voltage Transfer Ratio Approach and Bayesian Classifier;172
20.1;1 Introduction;172
20.2;2 Bayesian Decision Model;173
20.3;3 Experiment Description and Experimental Data Evaluation;177
20.4;4 Summary;181
20.5;References;181
21;Remote Excitation Ultrasonic Waveguide-Based SHM for Critical Applications;182
21.1;Abstract;182
21.2;1 Introduction;182
21.2.1;1.1 Structural Health Monitoring (SHM);182
21.2.2;1.2 Ultrasonic Guided Wave-Based Waveguide;183
21.3;2 Experimental Setup;184
21.3.1;2.1 Design of Waveguide;184
21.4;3 SHM of Plate Structure;185
21.4.1;3.1 Generation of S0 Mode in Plate;185
21.4.2;3.2 Generation of SH0 Mode in Plate;186
21.5;4 Fem Simulation Studies;188
21.6;5 Conclusion;190
21.7;References;190
22;Development of GUI Based Tool for the Visualization of the FBG Spectrum Subjected to Guided Waves;192
22.1;Abstract;192
22.2;1 Introduction;192
22.3;2 Models Studied and Calculation Process Used;193
22.3.1;2.1 Numerical Settings;193
22.3.2;2.2 FBG Based Software;195
22.3.3;2.3 Theoretical Calculations and Background;195
22.4;3 GUI Matlab Based Software;197
22.4.1;3.1 FBG Strain Calculations;197
22.4.2;3.2 Validation;199
22.5;4 Conclusion;200
22.6;Acknowledgements;200
22.7;References;200
23;Weld Defect Location Method of U-Shaped Crane Boom Based on Helical Guided Waves;202
23.1;Abstract;202
23.2;1 Introduction;202
23.3;2 Theoretical Background;203
23.3.1;2.1 Elliptical Imaging Algorithm;203
23.3.2;2.2 Intelligent Defect Location Algorithm;205
23.4;3 Propagation Characteristics of Helical Guided Waves in U-shaped Boom;208
23.5;4 Experimental Validation;210
23.6;5 Conclusion;215
23.7;6 Declaration of Conflicting Interests;215
23.8;Funding;216
23.9;References;216
24;The Effect of the Infill Density in 3D-Printed PLA on Lamb Waves’ Propagation Characteristics and their Sensitivity to the Presence of Damage;217
24.1;Abstract;217
24.2;1 Introduction;217
24.3;2 Experiment Setup;218
24.4;3 Dispersion Analysis;220
24.5;4 Damage Imaging;222
24.6;5 Conclusions;224
24.7;Acknowledgments;224
24.8;References;224
25;Monitoring Dendrite Formation in Aqueous Zinc Batteries with SH0 Guided Waves;226
25.1;Abstract;226
25.2;1 Measurement Principle and Experimental Setup;227
25.2.1;1.1 Measurement Principle;227
25.2.2;1.2 Experimental Setup;227
25.2.3;1.3 Measurement Protocol;228
25.3;2 Results;229
25.3.1;2.1 Optical Results;229
25.3.2;2.2 Ultrasonic Results;229
25.4;3 Discussion;230
25.5;4 Conclusion;232
25.6;References;232
26;Stress Monitoring of Plates by Means of Nonlinear Guided Waves;234
26.1;1 Introduction;234
26.2;2 Equations of Motion;235
26.3;3 Finite Element Simulations;236
26.4;4 The Second-Harmonic Resonant Wave;238
26.4.1;4.1 Dependence of the Response on the Initial State of Prestress;239
26.4.2;4.2 Resonance Condition and Interaction Between Primary and Secondary Waves;240
26.5;5 Conclusion;241
26.6;References;242
27;Assessment of Stringer Debonding by Guided Wave Inspection in Composite Structures;243
27.1;1 Introduction;243
27.2;2 Introduction;244
27.2.1;2.1 Propagation Model;244
27.2.2;2.2 Damage Detection Approach;246
27.2.3;2.3 Numerical Model;246
27.3;3 Results;248
27.4;4 Discussion;250
27.5;5 Concluding Remarks;251
27.6;References;251
28;Computational Lamb Wave Analysis of a CFRP Shortened Curing Cycle;253
28.1;Abstract;253
28.2;1 Introduction;253
28.3;2 Experimental Cure Monitoring;255
28.3.1;2.1 Ultrasonic Cycle Shortening;255
28.3.2;2.2 Dynamic Mechanical Analysis;256
28.4;3 The Computational Model;257
28.4.1;3.1 Combined Modules;257
28.4.2;3.2 Results and Discussion;259
28.5;4 Conclusion;261
28.6;References;262
29;Guided Wave-Based Assessment of Bonded Composite Joints;264
29.1;1 Introduction;264
29.2;2 Fabrication of Composite Coupons;265
29.3;3 Guided Wave-Based Assessment of Kissing Bonds;266
29.3.1;3.1 Experimental Setup;267
29.3.2;3.2 Residual Bond Strength Characterization;268
29.4;4 NDE Results and Comparison with Destructive Tests;271
29.5;5 Conclusions;272
29.6;References;272
30;Modeling Magnetostrictive Transducers for SH Guided Wave Generation and Reception for Structural Health Monitoring;274
30.1;Abstract;274
30.2;1 Introduction;274
30.3;2 Model Setup;275
30.4;3 Modeling Results and Discussion;276
30.4.1;3.1 Mode Control Plot;276
30.4.2;3.2 Lift-Off Distance Effect;277
30.4.3;3.3 Adhesive Layer Effect;278
30.4.4;3.4 Two-Sided Transducer;280
30.5;4 Conclusions;281
30.6;References;282
31;Experimental Identification of Damage in Single Lap Joint;283
31.1;1 Introduction;283
31.2;2 Materials and Methods;285
31.2.1;2.1 Experimental Setup;285
31.2.2;2.2 Analytical Model;286
31.3;3 Results and Discussion;288
31.4;4 Conclusions;291
31.5;References;291
32;Damage Detection in Rods via Use of a Genetic Algorithm and a Deep-Learning Based Surrogate;294
32.1;1 Introduction;294
32.2;2 Cracked Rod Spectral Element Model;295
32.3;3 Deep-Learning-Based Surrogate Model;296
32.4;4 Genetic Algorithm for Damage Detection;296
32.4.1;4.1 Selection;297
32.4.2;4.2 Crossover;298
32.4.3;4.3 Mutation;299
32.5;5 Damage Detection Results;299
32.6;6 Conclusions;300
32.7;References;301
33;Ultrasonic Damage Assessment Using Virtual Time Reversal Indices and the RAPID Method;303
33.1;Abstract;303
33.2;1 Introduction;303
33.3;2 Theoretical Framework;304
33.4;3 Experimental Set-Up;308
33.5;4 Ultrasonic Imaging Results;309
33.6;5 Conclusions;312
33.7;References;312
34;Improved Detection of Localized Damage in Pipe-Like Structures Using Gradient-Index Phononic Crystal Lens;314
34.1;Abstract;314
34.2;1 Introduction;314
34.3;2 Methods and Models;315
34.4;3 Results and Discussion;316
34.5;4 Conclusions;320
34.6;Acknowledgment;320
34.7;References;320
35;Machine Learning and Modelling in Structural Health Monitoring;322
36;Optimized Electromechanical Impedance Spectroscopy Using Minimal Number of Test Frequencies;323
36.1;1 Introduction;323
36.2;2 Materials and Methods;324
36.2.1;2.1 Experimental Setup for Impedance Measurements up to 100 kHz;324
36.2.2;2.2 Measuring Protocol for the Aluminum Plate with Different Size Drilled Holes;325
36.2.3;2.3 Statistical Analysis of the Conductance Data;325
36.3;3 Results;327
36.3.1;3.1 Distance-Based Clustering of the Data;327
36.3.2;3.2 Tree Classifiers for Semi-supervised Learning;328
36.4;4 Discussion;329
36.5;5 Conclusion;330
36.6;References;330
37;A New Unsupervised Learning Approach for CWRU Bearing State Distinction;332
37.1;Abstract;332
37.2;1 Introduction;332
37.3;2 CWRU Bearing Dataset;334
37.4;3 Proposed Approach;335
37.4.1;3.1 Data Selection;336
37.4.2;3.2 Measurement Segmentation;336
37.4.3;3.3 Segment Transformation;337
37.4.4;3.4 Feature Extraction;337
37.4.5;3.5 Feature Clustering;337
37.5;4 Results;338
37.6;5 Conclusion;338
37.7;References;339
38;Machine Learning Based Predictive Modelling of a Steel Railway Bridge for Damage Modelling of Train Passages and Different Usage Scenarios;340
38.1;1 Introduction;340
38.2;2 Methodology;341
38.2.1;2.1 Data Gathering and Processing;341
38.2.2;2.2 Train Passage Data Set;342
38.2.3;2.3 Predictive Model;343
38.3;3 Results;344
38.4;4 Modelling Usage Scenarios;345
38.4.1;4.1 Train Speed Scenario;345
38.4.2;4.2 Train Configuration Scenario;347
38.5;5 Conclusion;348
38.6;References;348
39;Damage Detection in Composites by AI and High-Order Modelling Surface-Strain-Displacement Analysis;350
39.1;1 Introduction;350
39.2;2 Refined 1D Models;351
39.3;3 Damage Formulation;352
39.4;4 CNN for Damage Detection;352
39.4.1;4.1 CNN Architecture;352
39.4.2;4.2 CNN Training Process;353
39.5;5 Numerical Results;353
39.6;6 Conclusions;356
39.7;References;357
40;Adding Autonomy to Robotic Enabled Sensing;358
40.1;Abstract;358
40.2;1 Introduction;358
40.3;2 Autonomous Pose Correction;359
40.3.1;2.1 Sensor Orientation;360
40.3.2;2.2 Sensor Standoff;362
40.4;3 Autonomous Geometry Discovery;362
40.4.1;3.1 On-Line Computation of Next-Best-Pose;362
40.4.2;3.2 Progressive Mesh Growth;363
40.4.3;3.3 Inspection Confinement and Collision Avoidance;364
40.4.4;3.4 Termination Criteria;365
40.5;4 Simulations;365
40.6;5 Conclusions;367
40.7;Acknowledgements;367
40.8;References;367
41;Anomaly Detection in Vibration Signals for Structural Health Monitoring of an Offshore Wind Turbine;368
41.1;1 Introduction;368
41.2;2 Case Presentation and Data Exploration;369
41.3;3 Methodologies and Results;372
41.3.1;3.1 Evaluation Metric;372
41.3.2;3.2 Baselines Models;373
41.3.3;3.3 Proposed Approach;373
41.4;4 Conclusion;377
41.5;References;377
42;Global Health Assessment of Structures Using NDT and Machine Learning;379
42.1;Abstract;379
42.2;1 Introduction;379
42.3;2 Need for Structural Health Assessment;380
42.4;3 Advances in SHA;381
42.5;4 Case Study: Assessment of Global Behaviour of RCC Building Using NDT and ML;381
42.6;5 Global Behaviour of the Structure Using Traditional Method;382
42.6.1;5.1 Methodology;382
42.6.2;5.2 Visual Inspection;383
42.6.3;5.3 Condition Mapping;384
42.6.4;5.4 Non-Destructive Testing;385
42.6.5;5.5 Numerical Modelling and Analysis;386
42.7;6 Global Behaviour Through Machine Learning;387
42.7.1;6.1 Data Collection;387
42.7.2;6.2 Support Vector Machine (SVM);387
42.7.3;6.3 Results and Discussion;388
42.8;7 Conclusion;389
42.9;References;389
43;A Review on Technological Advancements in the Field of Data Driven Structural Health Monitoring;391
43.1;Abstract;391
43.2;1 Introduction;391
43.3;2 Structural Health Monitoring Using Data Driven;393
43.3.1;2.1 Vibration Based Structural Health Monitoring;393
43.3.2;2.2 Vision Based Structural Health Monitoring;396
43.4;3 Conclusions;398
43.5;References;398
44;Physical Covariance Functions for Dynamic Systems with Time-Dependent Parameters;401
44.1;1 Introduction;401
44.2;2 Deriving Physical Covariance Functions;403
44.2.1;2.1 Uninformed Gaussian Process Priors;403
44.2.2;2.2 Towards Physically Representative Covariance Functions;404
44.2.3;2.3 Handling Parameters with a Time-Dependency;405
44.3;3 A Comparison Between Kernel Performance;406
44.4;4 Concluding Remarks;410
44.5;References;410
45;Damage Assessment of an Aircraft’s Wing Spar Using Gaussian Process Regressors;412
45.1;Abstract;412
45.2;1 Introduction;412
45.3;2 The Finite Element Model;413
45.4;3 Damage Identification Framework and Results;415
45.4.1;3.1 Using Strain to Infer Damage Parameters;415
45.4.2;3.2 Assessing Damage Criticality;417
45.5;4 Conclusions;419
45.6;References;419
46;Experimental Damage Localization and Quantification with a Numerically Trained Convolutional Neural Network;421
46.1;Abstract;421
46.2;1 Introduction;421
46.3;2 Database Computation;422
46.4;3 Networks Architectures;424
46.5;4 Networks Evaluation;426
46.6;5 Conclusion;426
46.7;References;427
47;On the Application of Partial Domain Adaptation for PBSHM;428
47.1;1 Introduction;428
47.2;2 Domain Adaptation;429
47.2.1;2.1 Normal Condition Alignment;429
47.2.2;2.2 Balanced Distribution Adaptation;430
47.2.3;2.3 Instance-Weighting for Partial Domain Adaptation;432
47.3;3 Case Study: Numerical Three-Storey and Four-Storey Population;433
47.3.1;3.1 Simulation;433
47.3.2;3.2 Comparison Procedure;434
47.3.3;3.3 Results;435
47.4;4 Discussion and Conclusions;436
47.5;A Material Properties;437
47.6;References;437
48;Intelligent Health Indicators Based on Semi-supervised Learning Utilizing Acoustic Emission Data;439
48.1;Abstract;439
48.2;1 Introduction;439
48.3;2 Experimental Setup;441
48.4;3 Workflow;442
48.4.1;3.1 Signal Pre-processing;442
48.4.2;3.2 Feature Extraction (FE);442
48.4.3;3.3 Feature Fusion;443
48.5;4 Results and Discussions;446
48.6;5 Conclusions;447
48.7;Funding;448
48.8;References;448
49;Supervised Deep Learning Algorithms for Delaminations Detection on Composites Panels by Wave Propagation Signals Analysis;449
49.1;Abstract;449
49.2;1 Introduction;449
49.3;2 Convolutional Neural Networks;450
49.4;3 SHM Algorithm Implementation;451
49.4.1;3.1 Numerical Model and Signal Analysis;451
49.4.2;3.2 RGB Images Generation;454
49.4.3;3.3 Images Analysis;455
49.4.4;3.4 Confusion Matrix;456
49.4.5;3.5 Classification with 0.072? lessthan ?DI? lessthan ?1.26;457
49.5;4 Conclusions;460
49.6;References;460
50;Site-Specific Defect Detection in Composite Using Solitary Waves Based on Deep Learning;462
50.1;Abstract;462
50.2;1 Introduction;462
50.3;2 Experimental Setup for HNSW Datasets;463
50.4;3 CNN Architectures for Defect Detection in Composites;465
50.5;4 Results and Discussion;467
50.6;5 Conclusion;469
50.7;Acknowledgements;469
50.8;References;470
51;Machine Learning Based Classification of Guided Wave Signals in the Context of Inter-specimen Variabilities;472
51.1;1 Introduction;472
51.2;2 Experimental Setup;474
51.3;3 Signal Processing and Data Preparation;475
51.3.1;3.1 Labeling Process: Path Identification;475
51.3.2;3.2 Disassociating Coupon Connection Between Pristine and Damaged States;476
51.4;4 Defect Detection Methodology;477
51.4.1;4.1 Feature Extraction Using Autoregression;477
51.4.2;4.2 Classification;478
51.5;5 Experimental Validation Results;479
51.5.1;5.1 Data Requirement Study;479
51.5.2;5.2 Performance Comparison;479
51.6;6 Conclusion and Perspective;480
51.7;References;480
52;Bayesian Changepoint Modelling for Reference-Free Damage Detection with Acoustic Emission Data;482
52.1;1 Introduction;482
52.2;2 Bayesian Online Change Point Detection;484
52.2.1;2.1 Bayesian Identification;484
52.2.2;2.2 Initialising the Model;486
52.3;3 Data Collection;486
52.4;4 Results and Discussion;487
52.5;5 Concluding Remarks and Future Work;490
52.6;References;490
53;Integrating Physical Knowledge into Gaussian Process Regression Models for Probabilistic Fatigue Assessment;492
53.1;1 Introduction;492
53.2;2 Methodology;494
53.2.1;2.1 Gaussian Process Regression;494
53.2.2;2.2 Description of SDOF Covariance Function;495
53.3;3 Interpretation of Model Variance;495
53.3.1;3.1 Interpreting the Confidence Intervals from Physics Derived Kernels;495
53.3.2;3.2 Combining Covariance Functions;496
53.4;4 Case Study;496
53.5;5 Discussion and Conclusions;499
53.6;References;501
54;Hybrid Training of Supervised Machine Learning Algorithms for Damage Identification in Bridges;502
54.1;Abstract;502
54.2;1 Introduction;502
54.3;2 Z-24 Bridge and Monitoring Data;503
54.4;3 Finite Element Model and Hybrid Training Matrix;504
54.5;4 Supervised Algorithms Training and Damage Identification;507
54.6;5 Conclusions;511
54.7;References;511
55;Imbalanced Multi-class Classification of Structural Damage in a Wind Turbine Foundation;512
55.1;1 Introduction;513
55.2;2 Theoretical Background;514
55.2.1;2.1 Mean Centered Unitary Group Scaling (MCUGS);514
55.2.2;2.2 Principal Component Analysis (PCA);514
55.2.3;2.3 Extreme Gradient Boosting (XGBoost) Classifier;514
55.3;3 Dataset for Validation;515
55.4;4 Damage Classification Methodology;516
55.5;5 Results and Discussion;517
55.6;6 Conclusions;519
55.7;References;519
56;Dynamic Behavior Analysis of a Rotor-Bearing-Squeeze Film Damper Coupling System with Bearing Outer Race Localized Defect;521
56.1;Abstract;521
56.2;1 Introduction;522
56.3;2 Modeling of the RBSC System;522
56.3.1;2.1 Bearing Force Model Considering Centrifugal Load;523
56.3.2;2.2 SFD Nonlinear Oil-Film Force Model;526
56.3.3;2.3 Governing Equations of Motion;527
56.4;3 Simulation and Discussion;528
56.5;4 Conclusions;530
56.6;Acknowledgment;530
56.7;References;530
57;Wave Propagation Modeling via Neural Networks for Emulating a Wave Response Signal;532
57.1;1 Introduction;533
57.2;2 Dataset Generation;533
57.3;3 Neural Network Framework;534
57.3.1;3.1 Deep Convolutional Autoencoder (DCAE);534
57.3.2;3.2 Feed-Forward Neural Network (FFNN);536
57.3.3;3.3 Training of the Neural Network Framework;536
57.4;4 Results;536
57.5;5 Conclusions and Future Work;539
57.6;References;539
58;Delamination Identification Using Global Convolution Networks;541
58.1;1 Introduction;541
58.2;2 Methodology;543
58.2.1;2.1 Dataset;543
58.2.2;2.2 Data Preprocessing;543
58.3;3 Semantic Segmentation Models;544
58.3.1;3.1 Global Convolutional Network;544
58.4;4 Results and Discussions;545
58.4.1;4.1 Numerical Cases;546
58.4.2;4.2 Experimental Case;548
58.5;References;548
59;A Spatial Autoregressive Approach for Wake Field Prediction Across a Wind Farm;550
59.1;1 Introduction;550
59.2;2 A Small Simulated Wind Farm;552
59.3;3 Spatial Autoregressive Models;554
59.3.1;3.1 Linear SPARX Model;554
59.3.2;3.2 Nonlinear SPARX Model;555
59.3.3;3.3 GP-SPARX Model;555
59.4;4 Result and Comparison;555
59.5;5 Conclusions;558
59.6;References;559
60;ConvLSTM Based Approach for Delamination Identification Using Sequences of Lamb Waves;561
60.1;1 Introduction;561
60.2;2 Dataset Preparation;563
60.3;3 A Brief Introduction to RNN, LSTM and ConvLSTM;564
60.4;4 The Proposed Model;565
60.5;5 Results and Discussions;566
60.6;6 Conclusions;568
60.7;References;568
61;Structural Assessment and Health Monitoring of the Builtup Environment with Satellite Radar Interferometry: Methodologies and Applications;571
62;The Use DInSAR Technique for the Study of Land Subsidence Associated with Illegal Mining Activities in Zaruma – Ecuador, a Cultural Heritage Cite;572
62.1;Abstract;572
62.2;1 Introduction;573
62.3;2 Study Area;574
62.3.1;2.1 Geological Setting;574
62.4;3 Data Set and Methods;575
62.4.1;3.1 Geotechnical Analysis;575
62.4.2;3.2 DInSAR Analysis;576
62.5;4 Results;577
62.5.1;4.1 Geotechnical Results;577
62.5.2;4.2 Interferometric Results;578
62.6;5 Conclusions;580
62.7;References;580
63;Structural Monitoring of a Masonry Hydraulic Infrastructure in Rome: GIS Integration of SAR Data, Geological Investigation and Historical Surveys;582
63.1;Abstract;582
63.2;1 Introduction;583
63.3;2 Methodology;583
63.4;3 Application;583
63.4.1;3.1 3D Model;585
63.4.2;3.2 Preliminary Structural Monitoring and Damage Assessment;586
63.5;4 Conclusions;588
63.6;References;588
64;Integration of Multi-source Data to Infer Effects of Gradual Natural Phenomena on Structures;591
64.1;Abstract;591
64.2;1 Introduction;591
64.3;2 Materials and Method;593
64.3.1;2.1 Selected Case Studies;593
64.3.2;2.2 Urban Analyses: Historic Center of Central Archaeological Area;595
64.3.3;2.3 Localized Analysis: The Colosseum;596
64.4;3 Results and Discussion;598
64.5;References;599
65;An Application of the DInSAR Technique for the Structural Monitoring of the “Vittorino da Feltre” School Building in Rome;601
65.1;Abstract;601
65.2;1 Introduction;601
65.3;2 Procedure;602
65.4;3 The “Vittorino da Feltre” School Building in Rome;603
65.5;4 SAR Data;605
65.6;5 Structural Damage Survey;609
65.7;6 Conclusion;609
65.8;References;610
66;Techniques for Structural Assessment Based on MT-DInSAR Data, Applied to the San Michele Complex in Rome;612
66.1;Abstract;612
66.2;1 Introduction;613
66.3;2 Proposed Comprehensive Approach;613
66.4;3 SBAS-DInSAR Methodology Applied to the Area of Rome, Italy;614
66.5;4 The San Michele Complex Case Study;614
66.6;5 Conclusions;621
66.7;References;621
67;Satellite Interferometric Data and Perturbation Characteristics for Civil Structures at Nanohertz;623
67.1;Abstract;623
67.2;1 Introduction;623
67.3;2 Materials and Method;624
67.3.1;2.1 Time Domain Analysis;624
67.3.2;2.2 Frequency Domain Analysis;625
67.3.3;2.3 Entropy Analysis;625
67.4;3 Results and Discussion;626
67.4.1;3.1 Time Domain Analysis;626
67.4.2;3.2 Frequency Domain Analysis;627
67.4.3;3.3 Entropy Analysis;628
67.5;4 Conclusions;630
67.6;References;630
68;Standardization and Guidelines on SHM and NDT: Needs and Ongoing Activities;632
69;Offline Algorithm Selection of CMA-ES Variants in Bayesian Optimal Sensor Placement: Application to Buildings and Recommendations to the Philippine Instrumentation Practice;633
69.1;Abstract;633
69.2;1 Introduction;633
69.3;2 Related Work on OSP in SHM;634
69.4;3 Problem Statement and Objectives;635
69.5;4 Algorithm Selection in OSP;635
69.6;5 Single-Sensor Investigation on a Steel Column;636
69.7;6 Application to the ASCE Benchmark Structure;637
69.7.1;6.1 Undamaged Case;637
69.7.2;6.2 Damaged Case;638
69.8;7 Comments on the Philippine SHM Practice;639
69.9;8 Conclusions and Recommendations;640
69.10;Acknowledgments;641
69.11;References;641
70;Small Punch Test Method for SHM;643
70.1;Abstract;643
70.2;1 Introduction;643
70.3;2 Small Punch Test;644
70.3.1;2.1 Material Sampling;644
70.3.2;2.2 SPT Test Set;645
70.3.3;2.3 SPT Test Principles;646
70.4;3 Case Study;646
70.4.1;3.1 Small Punch Test vs Uniaxial Tensile Test;647
70.4.2;3.2 Ductile-Brittle Transition Temperature;648
70.4.3;3.3 Results Discussion;650
70.5;4 Conclusion;651
70.6;References;651
71;A Preliminary Qualification Approach for Structural Health Monitoring Systems;653
71.1;Abstract;653
71.2;1 Introduction;653
71.3;2 The European Framework for Qualification of Construction Products;654
71.4;3 A Proposal for Qualification of Civil SHM Systems;656
71.5;4 Case Study and Discussion;658
71.6;5 Conclusions and Future Developments;661
71.7;Acknowledgments;661
71.8;References;661
72;Smart Self-Sensory Concrete Based Structures and Infrastructures;663
73;A Review on Non-destructive Evaluation of Civil Structures Using Magnetic Sensors;664
73.1;Abstract;664
73.2;1 Introduction;664
73.3;2 Fundamentals;665
73.3.1;2.1 Magnetic Flux Leakage;665
73.3.2;2.2 Eddy Currents;665
73.3.3;2.3 Hall Effect Sensors;666
73.3.4;2.4 Magnetoresistive Sensors;667
73.4;3 Applications;667
73.4.1;3.1 Hall Effect Sensors;667
73.4.2;3.2 Magnetoresistive Sensors;669
73.5;4 Discussion and Conclusions;670
73.6;References;672
74;Realization and Testing of Hybrid Textile Reinforced Concrete Prototype Modules Sensorized with Distributed Fiber Optic Sensors;674
74.1;Abstract;674
74.2;1 Introduction;674
74.3;2 Prototypes Preparation;675
74.4;3 Testing;678
74.4.1;3.1 Optical Testing;678
74.4.2;3.2 Testing of the Measuring Behaviour;679
74.5;4 Conclusions;682
74.6;Acknowledgements;682
74.7;References;682
75;Condition Monitoring of Ageing Bridges and Infrastructure;683
76;Fatigue Analysis on Four Months of Data on a Steel Railway Bridge: Event Detection and Train Features’ Effect on Fatigue Damage;684
76.1;Abstract;684
76.2;1 Introduction;684
76.3;2 Case Study and Measurement Campaign;686
76.4;3 Event-Based Methodology;687
76.4.1;3.1 Part I (Event Detection);687
76.4.2;3.2 Part II (Processing the Events);688
76.5;4 Results and Discussion;691
76.5.1;4.1 Effect of Train Type and Axle Number;691
76.5.2;4.2 Effect of Speed and Direction;692
76.6;5 Conclusion;693
76.7;Acknowledgments;693
76.8;References;693
77;Effect of Aging of Bearings on the Behavior of Single-Span Railway Bridges;695
77.1;1 Introduction;695
77.2;2 Numerical Model and Analysis;696
77.3;3 Concluding Remarks;702
77.4;References;703
78;Long-Term Structural Monitoring of a Skewed Masonry Arch Railway Bridge Using Fibre Bragg Gratings;704
78.1;Abstract;704
78.2;1 Introduction;704
78.2.1;1.1 Global Context;704
78.2.2;1.2 CFM-5: the ‘Barkston Road’ Bridge;705
78.3;2 The Monitoring Installation at CFM-5;707
78.3.1;2.1 The FBG Sensing Installation;707
78.3.2;2.2 Autonomous, Remote FBG Monitoring;708
78.4;3 Results and Discussion;709
78.4.1;3.1 Sensitivity of Bridge Response;709
78.5;4 Conclusions;713
78.6;References;713
79;A Novel Procedure for Damping Ratio Identification from Free Vibration Tests with Application to Existing Bridge Decks;714
79.1;Abstract;714
79.2;1 Introduction;714
79.3;2 Modal Component Extraction;715
79.3.1;2.1 Selection of the Signal;715
79.3.2;2.2 Extraction of the Modal Components;716
79.3.3;2.3 Evaluation of Damping Ratios;718
79.4;3 Numerical Applications;719
79.4.1;3.1 Theoretical Signal;720
79.4.2;3.2 Real Signal;721
79.5;4 Conclusions;723
79.6;References;723
80;A Review on Bridge Instrumentation in the United States;724
80.1;Abstract;724
80.2;1 Introduction;724
80.3;2 Structural Health Monitoring;725
80.4;3 Bridge Instrumentation in the U.S.;725
80.4.1;3.1 Golden Gate Bridge;725
80.4.2;3.2 Fred Hartman Bridge;726
80.4.3;3.3 Sunshine Skyway Bridge;726
80.4.4;3.4 Quincy Bayview Bridge;726
80.4.5;3.5 New Benicia-Martinez Bridge;726
80.4.6;3.6 North Halawa Valley Viaduct;727
80.4.7;3.7 Manhattan Bridge;727
80.4.8;3.8 Vincent Thomas Bridge;728
80.4.9;3.9 Mackinac Bridge;728
80.4.10;3.10 Carroll Lee Cropper Bridge;728
80.4.11;3.11 Huey P. Long Bridge;728
80.4.12;3.12 Neville Island Bridge;729
80.4.13;3.13 Birmingham Bridge;729
80.4.14;3.14 Columbia River I-5 Bridge;730
80.5;4 Conclusion;730
80.6;Acknowledgement;731
80.7;References;731
81;How to Make a Self-sensing House with Distributed Fiber Optic Sensing;733
81.1;Abstract;733
81.2;1 Introduction;733
81.3;2 DFOS Installation and Documentation;734
81.4;3 Temperature and Strain Measurements of the Ceiling;736
81.5;4 Seasonal Temperature Changes Within the Ground Plate;738
81.6;5 Movement of People Within the House;739
81.7;6 Conclusion and Outlook;740
81.8;References;741
82;Automation in Documentation of Ageing Masonry Infrastructure Through Image-Based Techniques and Machine Learning;742
82.1;Abstract;742
82.2;1 Introduction;742
82.3;2 Block Segmentation;743
82.4;3 Case Study;746
82.5;4 Conclusions;748
82.6;References;749
83;Health Monitoring Methodologies and Technologies for Aerospace Actuation and Drive Systems;751
84;Condition Monitoring of a Gear Box by Acoustic Camera and Machine Learning Techniques;752
84.1;Abstract;752
84.2;1 Introduction;752
84.2.1;1.1 Statement of the Problem;752
84.3;2 Experimental Data Analysis;753
84.3.1;2.1 Experimental Test Rig and Setup;753
84.3.2;2.2 Analysis Procedure;755
84.4;3 Analysis of the Results;758
84.5;4 Conclusions and Future Applications;760
84.6;References;761
85;Health Monitoring Methodologies for Aerospace Electromechanical Actuation Systems;762
85.1;1 Introduction;762
85.2;2 Aviation Trends;763
85.2.1;2.1 Advantages and Drawbacks;763
85.2.2;2.2 EMA Requirements;764
85.2.3;2.3 Failure Modes;766
85.3;3 Condition Monitoring;767
85.4;4 Potential Future Steps;769
85.5;5 Concluding Remarks;770
85.6;References;771
86;Ultrasonic and Electromagnetic Waves for Diagnosis, Monitoring and Control;773
87;Monitoring of Pipelines Using Microwave Structural Health Monitoring;774
87.1;1 Introduction;774
87.2;2 Theoretical Background;775
87.2.1;2.1 Detection Concept;775
87.3;3 Experimental Setup;776
87.3.1;3.1 Experimental Measurements;777
87.4;4 Results;778
87.4.1;4.1 Characterization of the Antenna;778
87.4.2;4.2 Damage Detection;779
87.5;5 Conclusion and Outlook;781
87.6;References;782
88;Analysis and Compensation of Relative Humidity and Ice Formation Effects for Radar-Based SHM Systems Embedded in Wind Turbine Blades;783
88.1;1 Introduction;783
88.2;2 Theroretical Background;784
88.2.1;2.1 Wave Excitation;784
88.3;3 Experimental Setup;784
88.3.1;3.1 Radar Sensor;784
88.3.2;3.2 Climate Chamber;785
88.4;4 Results;786
88.4.1;4.1 Humidity Influence;786
88.4.2;4.2 Environmetal Influence Compensation;787
88.4.3;4.3 Ice Detection;788
88.5;5 Summary and Future Work;791
88.6;References;792
89;In-Process Monitoring of Surface Roughness of Internal Channels Using;793
89.1;Abstract;793
89.2;1 Introduction;793
89.3;2 Methodology;794
89.3.1;2.1 Phase-Screen Approximation;794
89.3.2;2.2 Correction of Beam Spreading Effect;795
89.4;3 Numerical Simulation;796
89.4.1;3.1 Finite Element Modeling;796
89.4.2;3.2 Simulation Results;796
89.5;4 Experimental Validation;798
89.5.1;4.1 Experimental Setup;798
89.5.2;4.2 Experiment Results;799
89.6;5 Conclusions;799
89.7;References;799
90;Simultaneous Monitoring of Component Thickness and Internal Temperature Gradient Using Ultrasound;801
90.1;1 Introduction;801
90.2;2 Measurement Principles;802
90.2.1;2.1 Ultrasonic Thickness Measurement;802
90.2.2;2.2 Ultrasonic Temperature Sensing;803
90.2.3;2.3 The Dual-Wave Correction Method;803
90.2.4;2.4 Calculation Process;804
90.3;3 Numerical Simulation;805
90.3.1;3.1 Data Generation;805
90.3.2;3.2 Simulation Results;806
90.4;4 Experimental Verification;807
90.4.1;4.1 Experimental Procedures;807
90.4.2;4.2 Results and Discussion;808
90.5;5 Conclusion;809
90.6;References;809
91;The Use of a Magnetic Probe Coupler to Aid the Reliability of Manual Ultrasonic Testing (MUT) on Carbon Steel Components;810
91.1;Abstract;810
91.2;1 Introduction;810
91.3;2 The Prevalence of MUT in Industry;811
91.3.1;2.1 Magnetic Probe Coupler;812
91.3.2;2.2 Future Work;814
91.4;3 Conclusion;815
91.5;References;816
92;An Adaptive Impedance Matching Network for Ultrasonic De-icing;817
92.1;Abstract;817
92.2;1 Introduction;817
92.3;2 Experimental Setup;818
92.3.1;2.1 Impedance Measuring System;819
92.3.2;2.2 Adaptive Impedance Matching Network;819
92.4;3 Results;820
92.5;4 Conclusions;822
92.6;Acknowledgments;822
92.7;References;822
93;Practical Experiences to Know Making Acoustic Emission-Based SHM Successful;823
93.1;1 Introduction;823
93.2;2 Experiments;825
93.3;3 Methods;826
93.4;4 Results and Discussion;828
93.5;5 Summary and Conclusions;830
93.6;References;830
94;General Session;831
95;Structural Health Monitoring of Adhesively Bonded Skin-Stiffener Composite Joint Using Distributed Fibre Optic Sensor;832
95.1;Abstract;832
95.2;1 Introduction;832
95.3;2 Experimental Setup;833
95.4;3 Results and Discussions;835
95.5;4 Conclusion;838
95.6;References;839
96;Towards Video-Based System Identification and Finite Element Model Updating of Civil Structures and Infrastructures;840
96.1;Abstract;840
96.2;1 Introduction;840
96.2.1;1.1 The Rationale for Computer Vision-Based SHM;841
96.3;2 Materials and Methods;842
96.3.1;2.1 Phase-Based Motion Magnification (PBMM);842
96.3.2;2.2 Finite Element Model Updating (FEMU);843
96.4;3 Case Study #1: SHM of High Rise Buildings;845
96.5;4 Case Study #2: Bridge Monitoring;846
96.6;5 Conclusions;847
96.7;References;847
97;Monitoring of Hydraulic Structure: Problem and Approach;849
97.1;Abstract;849
97.2;1 Problem Statement;849
97.3;2 Structural Health Monitoring;851
97.4;3 Requirements for the SHM System;852
97.5;4 Data-Based Model;854
97.6;5 Long-Term Stability;855
97.7;6 Conclusion and Outlook;856
97.8;References;857
98;Evaluating the Usefulness of Audible Acoustics as a Damage Detection Method in Large Composite Structures;858
98.1;Abstract;858
98.2;1 Introduction;858
98.3;2 Experimental Set-Up;860
98.3.1;2.1 Material Specification;860
98.3.2;2.2 Acoustic Camera Set-Up;861
98.3.3;2.3 Strain Gauge Set-Up;862
98.4;3 Results;862
98.5;4 Conclusion;869
98.6;References;870
99;Low-Power Actuation Methods for Highly Nonlinear Solitary Wave Transducers Used to Assess Human Eyes;871
99.1;1 Introduction;871
99.2;2 Design and Development of the Transducer;873
99.2.1;2.1 Particle Size;873
99.2.2;2.2 L-Shape Container;873
99.2.3;2.3 Sensor Placement;875
99.2.4;2.4 Sensor Type;875
99.2.5;2.5 Solenoid Driver Selection;875
99.3;3 Testing Background and Results;876
99.4;4 Conclusion;879
99.5;References;880
100;Numerical and Experimental Study of Acoustic Emission Source Signal Reconstruction in Fibre-Reinforced Composite Panels;881
100.1;Abstract;881
100.2;1 Introduction;881
100.3;2 Mathematical Procedure;882
100.3.1;2.1 Dispersion Compensation;882
100.3.2;2.2 Waveform Similarity;883
100.4;3 Simulation Using 3D SEM;884
100.5;4 Experimental Procedure;885
100.6;5 Numerical and Experimental Results and Analysis;887
100.6.1;5.1 Simulation Results of GFRP Panel;887
100.6.2;5.2 Experiment on GFRP Panel;888
100.7;6 Conclusion;889
100.8;Acknowledgments;890
100.9;References;890
101;Damage Detection and Identification in Composites by Acoustic Emission, Ultrasonic Inspection and Computer Tomography;892
101.1;Abstract;892
101.2;1 Introduction;892
101.3;2 Sample Preparation;893
101.3.1;2.1 Samples with Impact;893
101.3.2;2.2 Samples with Porosity;893
101.4;3 Test Matrix;894
101.5;4 Experimental Results;895
101.5.1;4.1 Ultrasonic Inspection and CT Investigation;895
101.5.2;4.2 Acoustic Emission Monitoring;896
101.6;5 Conclusion;899
101.7;Acknowledgement;900
101.8;References;900
102;Condition Assessment of Low-Speed Slew Bearings in Offshore Applications Using Acoustic Emission Monitoring;901
102.1;Abstract;901
102.2;1 Introduction;901
102.3;2 Methodology;902
102.3.1;2.1 Experimental Set-Up;902
102.3.2;2.2 Experimental Procedures;903
102.3.3;2.3 Data Processing;904
102.4;3 Results;905
102.5;4 Conclusions;908
102.6;Acknowledgements;908
102.7;References;908
103;Influence of Environmental Conditions and Damage on Closely Spaced Modes;911
103.1;1 Introduction;911
103.2;2 Theoretical Background;912
103.2.1;2.1 Bayesian Operational Modal Analysis;912
103.2.2;2.2 Uncertainty of the MAC and S2MAC;913
103.3;3 Application;914
103.3.1;3.1 Influence of Environmental Conditions on Natural Frequencies and Mode Shapes;915
103.3.2;3.2 Damage Detection;917
103.4;4 Conclusion;919
103.5;References;919
104;Thin Membrane with “Human Touch” Sensitivity: Body Pressure and Temperature Measurements with Optical Fiber Sensors;921
104.1;Abstract;921
104.2;1 Introduction;921
104.3;2 Design and Development of the Thin Membrane;922
104.3.1;2.1 Working Principles;922
104.3.2;2.2 Technological Development of the Thin Membrane;923
104.4;3 Calibration of the Thin Elastomeric Membrane;924
104.4.1;3.1 Set-Up;924
104.4.2;3.2 Calibration Results;925
104.5;4 Validation Tests;926
104.6;5 Conclusions;928
104.7;References;929
105;Enabling FO-Based HUMS Applications Through an Innovative Integration Technique: Application to a Rotor Blade Mockup;930
105.1;Abstract;930
105.2;1 Introduction;930
105.3;2 Smart-Veil Manufacturing;933
105.4;3 The Case Study: A Sensorized Helicopter Blade Mockup;936
105.4.1;3.1 Strain Measurement;936
105.4.2;3.2 Manufacturing;937
105.5;4 Calibration and Validation;939
105.6;5 Conclusions;940
105.7;Bibliography;941
106;An Integrated Fiber Optic Based SHM System for Structural Composite Components: Application to a Racing Motorbike Fork;942
106.1;Abstract;942
106.2;1 Introduction;942
106.3;2 Telescopic Up-Side Down Front Fork Design;943
106.4;3 Material and Methods;944
106.5;4 Structural Monitoring System Design;945
106.5.1;4.1 Finite Element Models;945
106.5.2;4.2 Fiber Bragg Grating Sensors;945
106.6;5 Production of the Fork Tubes;947
106.7;6 Validation and Load Tests;948
106.7.1;6.1 Motostudent Safety Checks;948
106.7.2;6.2 Stiffness Comparison;948
106.7.3;6.3 Bending Test Different Azimuth (Sensor Location);949
106.8;7 Conclusion;951
106.9;References;951
107;Estimation of Local Failure in Large Tensegrity Structures via Substructuring Using Interacting Particle-Ensemble Kalman Filter;952
107.1;1 Introduction;952
107.2;2 System Model;954
107.3;3 Substructuring Approach;954
107.4;4 Output Injection Approach;956
107.5;5 Numerical Experiment;958
107.6;6 Conclusion;959
107.7;References;960
108;Spherical Inclusions Based Defect Modes in a Phononic Crystal for Piezoelectric Energy Harvesting;961
108.1;Abstract;961
108.2;1 Introduction;961
108.3;2 Simulation Methods;962
108.3.1;2.1 Band Structure Analysis;963
108.3.2;2.2 Transmission Analysis;964
108.3.3;2.3 Energy Harvester Voltage Response Analysis;965
108.4;3 Results and Discussion;966
108.4.1;3.1 Perfect PnC Band Structure and Transmission Analysis;966
108.4.2;3.2 Defect PnC Analysis;967
108.4.3;3.3 Energy Harvester Performance Analysis;968
108.5;4 Conclusion;970
108.6;References;970
109;Low Flow Rate Measurement and Leak Detection for Health Monitoring of Water Equipment;972
109.1;Abstract;972
109.2;1 Introduction;972
109.3;2 Materials and Methods;973
109.3.1;2.1 Flow Meter Geometry;973
109.3.2;2.2 Simulation;973
109.3.3;2.3 Sensor Synthesis;974
109.3.4;2.4 Testing;975
109.4;3 Results and Discussion;976
109.4.1;3.1 Factorial Analysis;976
109.4.2;3.2 Sensor Performance;976
109.4.3;3.3 Pressure-Drop;977
109.5;4 Conclusion;977
109.6;Acknowledgements;978
109.7;References;978
110;Frequency Domain System Identification of Error–in–Variables Systems for Vibration–Based Monitoring;981
110.1;1 Introduction;981
110.2;2 Frequency Domain Identification of AR+Noise Models in the Frisch Scheme;982
110.2.1;2.1 Problem Statement;982
110.2.2;2.2 A Frequency Domain Setup in the Frisch Scheme;983
110.3;3 Model Order Estimation;985
110.4;4 Experimental Validation;986
110.4.1;4.1 Methods;987
110.4.2;4.2 Results;987
110.5;5 Conclusions;989
110.6;References;990
111;Real-Time Remote Monitoring of Steam Turbine Blades Based on High Cycle Fatigue Module and Cloud Computing;991
111.1;Abstract;991
111.2;1 Introduction;991
111.3;2 FEM Stress Limit Calculation;992
111.4;3 HCF Analysis Method;993
111.5;4 Remote Monitoring and Cloud Computing;995
111.6;5 Conclusion;997
111.7;Acknowledgement;998
111.8;References;998
112;Numerical Modeling of a Pyroshock Test Plate for Qualification of Space Equipment;999
112.1;Abstract;999
112.2;1 Introduction;999
112.3;2 Methodology;1002
112.4;3 Results;1005
112.5;4 Conclusions;1007
112.6;References;1008
113;A Novel Smart Sensor Node with Embedded Signal Processing Functionalities Addressing Vibration–Based Monitoring;1009
113.1;1 Introduction;1010
113.2;2 Output–Only SysId Models for Vibration Analysis;1010
113.3;3 Sensor Node Description;1011
113.4;4 Experimental Validation;1013
113.4.1;4.1 Materials and Methods;1013
113.4.2;4.2 Results;1014
113.5;5 Conclusions;1017
113.6;References;1017
114;Collective Mobile 3D Printing: An Active Sensing Approach for Improved Autonomy;1018
114.1;1 Introduction;1018
114.2;2 Problem Formulation;1020
114.3;3 Shape Reconstruction;1021
114.4;4 Simulation Results;1022
114.5;5 Conclusions;1023
114.6;References;1023
115;Inferring the Size of Stochastic Systems from Partial Measurements;1025
115.1;1 Introduction;1025
115.2;2 Theory;1026
115.3;3 Numerics;1028
115.4;4 Conclusions;1030
115.5;References;1031
116;Wire Break Detection in Bridge Tendons Using Low-Frequency Acoustic Emissions;1033
116.1;1 Introduction;1033
116.2;2 Experiments;1034
116.2.1;2.1 Wire Break Experiments at Demolished Bridge Girders;1035
116.2.2;2.2 In-situ Wire Break Recordings on Real Bridge Construction;1035
116.2.3;2.3 Operational Recordings in Hagen, Germany;1036
116.3;3 Methodology;1037
116.3.1;3.1 Extraction of Impulse-Like Signals;1037
116.3.2;3.2 Time-Frequency Domain Features;1038
116.3.3;3.3 Wire Break Detection Using Support Vector Machines;1039
116.4;4 Results;1039
116.4.1;4.1 Comparison with Amplitude Based Hitdetection;1040
116.5;5 Conclusion;1040
116.6;References;1041
117;App4SHM – Smartphone Application for Structural Health Monitoring;1043
117.1;Abstract;1043
117.2;1 Introduction;1044
117.3;2 Software Architecture and Details;1045
117.3.1;2.1 Step 1 – Structure Identification;1045
117.3.2;2.2 Step 2 – Data Acquisition;1046
117.3.3;2.3 Step 3 – Feature Extraction;1046
117.3.4;2.4 Step 4 – Damage Detection;1047
117.4;3 Case Study: Twin Bridges Over the Itacaiúnas River;1047
117.5;4 Conclusions;1051
117.6;References;1052
118;Structural Damage Detection of Offshore Structures Using Kalman Filtering;1053
118.1;Abstract;1053
118.2;1 Introduction;1053
118.3;2 Mathematical Formulation and Kalman Filter;1054
118.3.1;2.1 State Space Formulation for Linear Systems;1055
118.3.2;2.2 Linear Approximation of Nonlinear Systems;1055
118.3.3;2.3 Augmented Kalman Filter;1056
118.4;3 Damage Detection Framework;1056
118.5;4 Numerical Example;1057
118.5.1;4.1 FE Model of the 2D Steel Jacket Structure;1058
118.5.2;4.2 Sensors, and Measurement Noise and External Loading;1059
118.5.3;4.3 Definition of Covariance Matrices;1059
118.6;5 Results;1060
118.7;6 Conclusions;1062
118.8;Acknowledgments;1062
118.9;References;1062
119;Experimental Fatigue Evaluation of a Gusset-Less Truss Connection;1064
119.1;Abstract;1064
119.2;1 Introduction;1064
119.3;2 Project Overview;1065
119.4;3 Experimental Test Setup;1066
119.5;4 Instrumentation;1068
119.6;5 Test Monitoring;1069
119.7;6 Finite Element Modeling;1070
119.8;7 Results;1071
119.9;References;1073
120;Author Index;1074



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.