Robdera | A Concise Approach to Mathematical Analysis | Buch | 978-1-85233-552-6 | sack.de

Buch, Englisch, 362 Seiten, Paperback, Format (B × H): 178 mm x 254 mm, Gewicht: 721 g

Robdera

A Concise Approach to Mathematical Analysis


Softcover Nachdruck of the original 1. Auflage 2003
ISBN: 978-1-85233-552-6
Verlag: Springer

Buch, Englisch, 362 Seiten, Paperback, Format (B × H): 178 mm x 254 mm, Gewicht: 721 g

ISBN: 978-1-85233-552-6
Verlag: Springer


A Concise Approach to Mathematical Analysis introduces the undergraduate student to the more abstract concepts of advanced calculus. The main aim of the book is to smooth the transition from the problem-solving approach of standard calculus to the more rigorous approach of proof-writing and a deeper understanding of mathematical analysis. The first half of the textbook deals with the basic foundation of analysis on the real line; the second half introduces more abstract notions in mathematical analysis. Each topic begins with a brief introduction followed by detailed examples. A selection of exercises, ranging from the routine to the more challenging, then gives students the opportunity to practise writing proofs. The book is designed to be accessible to students with appropriate backgrounds from standard calculus courses but with limited or no previous experience in rigorous proofs. It is written primarily for advanced students of mathematics - in the 3rd or 4th year of their degree - who wish to specialise in pure and applied mathematics, but it will also prove useful to students of physics, engineering and computer science who also use advanced mathematical techniques.
Robdera A Concise Approach to Mathematical Analysis jetzt bestellen!

Zielgruppe


Graduate


Autoren/Hrsg.


Weitere Infos & Material


Numbers and Functions.- Real Numbers.- Subsets of ?.- Variables and Functions.- Sequences.- Definition of a Sequence.- Convergence and Limits.- Subsequences.- Upper and Lower Limits.- Cauchy Criterion.- 3. Series.- Infinite Series.- Conditional Convergence.- Comparison Tests.- Root and Ratio Tests.- Further Tests.- 4. Limits and Continuity.- Limits of Functions.- Continuity of Functions.- Properties of Continuous Functions.- Uniform Continuity.- Differentiation.- Derivatives.- Mean Value Theorem.- L'Hôspital's Rule.- Inverse Function Theorems.- Taylor's Theorem.- Elements of Integration.- Step Functions.- Riemann Integral.- Functions of Bounded Variation.- Riemann-Stieltjes Integral.- Sequences and Series of Functions.- Sequences of Functions.- Series of Functions.- Power Series.- Taylor Series.- Local Structure on the Real Line.- Open and Closed Sets in ?.- Neighborhoods and Interior Points.- Closure Point and Closure.- Completeness and Compactness.- Continuous Functions.- Global Continuity.- Functions Continuous on a Compact Set.- Stone—Weierstrass Theorem.- Fixed-point Theorem.- Ascoli-Arzelà Theorem.- to the Lebesgue Integral.- Null Sets.- Lebesgue Integral.- Improper Integral.- Important Inequalities.- Elements of Fourier Analysis.- Fourier Series.- Convergent Trigonometric Series.- Convergence in 2-mean.- Pointwise Convergence.- A. Appendix.- A.1 Theorems and Proofs.- A.2 Set Notations.- A.3 Cantor's Ternary Set.- A.4 Bernstein's Approximation Theorem.- B. Hints for Selected Exercises.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.