Buch, Englisch, 326 Seiten, Format (B × H): 237 mm x 191 mm, Gewicht: 1000 g
With Scikit-Learn and PyTorch
Buch, Englisch, 326 Seiten, Format (B × H): 237 mm x 191 mm, Gewicht: 1000 g
ISBN: 978-0-12-822904-0
Verlag: Elsevier Science Publishing Co Inc
Machine Learning for Biomedical Applications: With Scikit-Learn and PyTorch presents machine learning techniques most commonly used in a biomedical setting. Avoiding a theoretical perspective, it provides a practical and interactive way of learning where concepts are presented in short descriptions followed by simple examples using biomedical data. Interactive Python notebooks are provided with each chapter to complement the text and aid understanding. Sections cover uses in biomedical applications, practical Python coding skills, mathematical tools that underpin the field, core machine learning methods, deep learning concepts with examples in Keras, and much more.
This accessible and interactive introduction to machine learning and data analysis skills is suitable for undergraduates and postgraduates in biomedical engineering, computer science, the biomedical sciences and clinicians.
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Technik Allgemein Computeranwendungen in der Technik
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Medizin, Gesundheitswesen Medizintechnik, Biomedizintechnik, Medizinische Werkstoffe
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Medizin, Gesundheitswesen Medizinische Mathematik & Informatik
- Technische Wissenschaften Sonstige Technologien | Angewandte Technik Medizintechnik, Biomedizintechnik
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Computeranwendungen in Wissenschaft & Technologie
Weitere Infos & Material
1. Programming in Python
2. Machine Learning Basics
3. Regression
4. Classification
5. Dimensionality reduction
6. Clustering
7. Ensemble methods
8. Feature extraction and selection
9. Introduction to Deep Learning
10. Neural Networks
11. Convolutional Neural Networks