Robinson / Deprez | Machine Learning for Biomedical Applications | Buch | 978-0-12-822904-0 | sack.de

Buch, Englisch, 326 Seiten, Format (B × H): 237 mm x 191 mm, Gewicht: 1000 g

Robinson / Deprez

Machine Learning for Biomedical Applications

With Scikit-Learn and PyTorch
Erscheinungsjahr 2023
ISBN: 978-0-12-822904-0
Verlag: Elsevier Science Publishing Co Inc

With Scikit-Learn and PyTorch

Buch, Englisch, 326 Seiten, Format (B × H): 237 mm x 191 mm, Gewicht: 1000 g

ISBN: 978-0-12-822904-0
Verlag: Elsevier Science Publishing Co Inc


Machine Learning for Biomedical Applications: With Scikit-Learn and PyTorch presents machine learning techniques most commonly used in a biomedical setting. Avoiding a theoretical perspective, it provides a practical and interactive way of learning where concepts are presented in short descriptions followed by simple examples using biomedical data. Interactive Python notebooks are provided with each chapter to complement the text and aid understanding. Sections cover uses in biomedical applications, practical Python coding skills, mathematical tools that underpin the field, core machine learning methods, deep learning concepts with examples in Keras, and much more.

This accessible and interactive introduction to machine learning and data analysis skills is suitable for undergraduates and postgraduates in biomedical engineering, computer science, the biomedical sciences and clinicians.

Robinson / Deprez Machine Learning for Biomedical Applications jetzt bestellen!

Weitere Infos & Material


1. Programming in Python
2. Machine Learning Basics
3. Regression
4. Classification
5. Dimensionality reduction
6. Clustering
7. Ensemble methods
8. Feature extraction and selection
9. Introduction to Deep Learning
10. Neural Networks
11. Convolutional Neural Networks


Robinson, Emma C.
Dr Robinson's research focuses on the development of computational methods for brain imaging analysis, and covers a wide range of image processing and machine learning topics. Most notably, her software for cortical surface registration (Multimodal Surface Matching, MSM) has been central to the development of ?of the Human Connectome Project's "Multi-modal parcellation of the Human Cortex " (Glasser et al, Nature 2016), and has featured as a central tenet in the HCP's paradigm for neuroimage analysis (Glasser et al, Nature NeuroScience 2016). This work has been widely reported in the media including Wired, Scientific American, and Wall Street Journal). Current research interests are focused on the application of advanced machine learning, and particularly Deep Learning to diverse data sets combining multi-modality imaging data with genetic samples.

Deprez, Maria
Dr Maria Deprez is a Lecturer in Medical Imaging in the Department of Perinatal Imaging & Health at the School of Biomedical Engineering & Imaging Sciences. Her Research interests are in motion correction and reconstruction of fetal and placental MRI, Spatio-temporal models of developing brain, segmentation, registration, atlases, machine learning, and deep learning



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.