Buch, Englisch, 554 Seiten, Format (B × H): 191 mm x 281 mm, Gewicht: 1634 g
Buch, Englisch, 554 Seiten, Format (B × H): 191 mm x 281 mm, Gewicht: 1634 g
Reihe: Chapman & Hall/CRC The Python Series
ISBN: 978-0-367-74451-9
Verlag: Taylor & Francis Ltd
This book is intended to serve as a bridge in statistics for graduates and business practitioners interested in using their skills in the area of data science and analytics as well as statistical analysis in general. On the one hand, the book is intended to be a refresher for readers who have taken some courses in statistics, but who have not necessarily used it in their day-to-day work. On the other hand, the material can be suitable for readers interested in the subject as a first encounter with statistical work in Python. Statistics and Data Visualisation with Python aims to build statistical knowledge from the ground up by enabling the reader to understand the ideas behind inferential statistics and begin to formulate hypotheses that form the foundations for the applications and algorithms in statistical analysis, business analytics, machine learning, and applied machine learning. This book begins with the basics of programming in Python and data analysis, to help construct a solid basis in statistical methods and hypothesis testing, which are useful in many modern applications.
Zielgruppe
Academic and Professional Practice & Development
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Programmier- und Skriptsprachen
- Mathematik | Informatik EDV | Informatik Informatik Mensch-Maschine-Interaktion Informationsvisualisierung
- Mathematik | Informatik Mathematik Stochastik
- Mathematik | Informatik EDV | Informatik Business Application Mathematische & Statistische Software
- Mathematik | Informatik EDV | Informatik Informatik Mensch-Maschine-Interaktion Informationsarchitektur
- Sozialwissenschaften Soziologie | Soziale Arbeit Soziologie Allgemein Empirische Sozialforschung, Statistik
- Wirtschaftswissenschaften Betriebswirtschaft Wirtschaftsmathematik und -statistik
- Wirtschaftswissenschaften Volkswirtschaftslehre Volkswirtschaftslehre Allgemein Wirtschaftsstatistik, Demographie
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Datenbankdesign & Datenbanktheorie
- Mathematik | Informatik EDV | Informatik Professionelle Anwendung
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Data Mining
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Spiele-Programmierung, Rendering, Animation
Weitere Infos & Material
1. Data, Stats and Stories - An Introduction 2. Python Programming Primer 3. Snakes, Bears & Other Numerical Beasts: NumPy, SciPy & Pandas 4. The Measure of All Things - Statistics 5. Definitely Maybe: Probability and Distributions 6. Alluring Arguments and Ugly Facts - Statistical Modelling and Hypothesis Testing 7. Delightful Details - Data Visualisation 8. Dazzling Data Designs - Creating Charts A. Variance: Population v Sample B. Sum of First n Integers C. Sum of Squares of the First n Integers D. The Binomial Coefficient E. The Hypergeometric Distribution F. The Poisson Distribution G. The Normal Distribution H. Skewness and Kurtosis I. Kruskal-Wallis Test - No Ties