Buch, Englisch, 669 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1036 g
17th International Work-Conference on Artificial Neural Networks, IWANN 2023, Ponta Delgada, Portugal, June 19-21, 2023, Proceedings, Part II
Buch, Englisch, 669 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1036 g
Reihe: Lecture Notes in Computer Science
ISBN: 978-3-031-43077-0
Verlag: Springer Nature Switzerland
This two-volume set LNCS 14134 and LNCS 14135 constitutes the refereed proceedings of the 17th International Work-Conference on Artificial Neural Networks, IWANN 2023, held in Ponta Delgada, Portugal, during June 19–21, 2023.
The 108 full papers presented in this two-volume set were carefully reviewed and selected from 149 submissions.
The papers in Part I are organized in topical sections on advanced topics in computational intelligence; advances in artificial neural networks; ANN HW-accelerators; applications of machine learning in biomedicine and healthcare; and applications of machine learning in time series analysis.
The papers in Part II are organized in topical sections on deep learning and applications; deep learning applied to computer vision and robotics; general applications of artificial intelligence; interaction with neural systems in both health and disease; machine learning for 4.0 industry solutions; neural networks in chemistry and material characterization; ordinal classification; real world applications of BCI systems; and spiking neural networks: applications and algorithms.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Naturwissenschaften Biowissenschaften Angewandte Biologie Bioinformatik
- Mathematik | Informatik EDV | Informatik Computerkommunikation & -vernetzung
- Mathematik | Informatik EDV | Informatik Informatik Rechnerarchitektur
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz
- Mathematik | Informatik EDV | Informatik EDV & Informatik Allgemein
- Technische Wissenschaften Elektronik | Nachrichtentechnik Nachrichten- und Kommunikationstechnik
Weitere Infos & Material
Deep Learning and Applications.- Deep Learning Applied to Computer Vision and Robotics.- General Applications of Artificial Intelligence.- Interaction with Neural Systems in Both Health and Disease.- Machine Learning for 4.0 Industry Solutions.- Neural Networks in Chemistry and Material Characterization.- Ordinal Classification.- Real World Applications of BCI Systems.- and Spiking Neural Networks: Applications and Algorithms.