Rowen / Vishne | Algebra | Buch | 978-0-367-23176-7 | sack.de

Buch, Englisch, 374 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 848 g

Reihe: Textbooks in Mathematics

Rowen / Vishne

Algebra

Groups, Rings, and Fields
2. Auflage 2025
ISBN: 978-0-367-23176-7
Verlag: Taylor & Francis Ltd

Groups, Rings, and Fields

Buch, Englisch, 374 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 848 g

Reihe: Textbooks in Mathematics

ISBN: 978-0-367-23176-7
Verlag: Taylor & Francis Ltd


Algebra is a subject we have become acquainted with during most of our mathematical education, often in connection with the solution of equations. Algebra: Groups, Rings, and Fields, Second Edition deals with developments related to their solutions.

The principle at the heart of abstract algebra, a subject that enables one to deduce sweeping conclusions from elementary premises, is that the process of abstraction enables us to solve a variety of such problems with economy of effort. This leads to the glorious world of mathematical discovery.

This second edition follows the original three-pronged approach: the theory of finite groups, number theory, and Galois’ amazing theory of field extensions tying solvability of equations to group theory.

As algebra has branched out in many directions, the authors strive to keep the text manageable while at the same time introducing the student to exciting new paths. In order to support this approach, the authors broadened the first edition, giving monoids a greater role, and relying more on matrices. Hundreds of new exercises were added.

A course in abstract algebra, properly presented, could treat mathematics as an art as well as a science. In this exposition, we try to present underlying ideas, as well as the results they yield.

Rowen / Vishne Algebra jetzt bestellen!

Zielgruppe


Undergraduate Advanced and Undergraduate Core

Weitere Infos & Material


1       Monoids and Groups                                                                                            

1.1       Examples of Groups and MonoidsWhen Is a Monoid a Group?

1.2       Exercises

2      Lagrange’s Theorem, Cosets, and an Application to Number Theory       

2.1       Cosets

2.2       Fermat’s Little Theorem

2.3       Exercises

3      Cauchy’s Theorem: Showing that a Number Is Greater Than 1

3.1       The Exponent

3.2       The symmetric group Sn: Our Main Example

3.3       The Product of Two Subgroups

3.4       Exercises

4      Structure of Groups: Homomorphisms, Isomorphisms, and Invariants            

4.1       Homomorphic Images

4.2       Exercises

5      Normal Subgroups: The Building Blocks of the Structure Theory       

5.1       The Residue Group

5.2       Noether’s Isomorphism Theorems

5.3       Conjugates in Sn

5.4       The Alternating Group

5.5       Exercises

6      Classifying Groups: Cyclic Groups and Direct Products            

6.1       Cyclic Groups

6.2       Generators of a Group

6.3       Direct Products

6.4       Application: Some Algebraic Cryptosystems

6.5       Exercises

7      Finite Abelian Groups                                                                                      

7.1       Abelian p-Groups

7.2       Proof of the Fundamental Theorem for Finite abelian Groups         

7.3       The Classification of Finite abelian Groups

7.4       Exercises

8      Generators and Relations                                                                               

8.1       Description of Groups of Low Order

8.3       Exercises

9      When Is a Group a Group? (Cayley’s Theorem)                             

9.1       The Generalized Cayley Theorem

9.2       Introduction to Group Representations

9.3       Exercises

10  Conjugacy Classes and the Class Equation                                          

10.1    The Center of a Group

10.2    Exercises

11    Sylow Subgroups                                                                                               

11.1    Groups of Order Less Than 60

11.2    Finite Simple Groups

11.3    Exercises

12   Solvable Groups: What Could Be Simpler?                                      

12.1    Commutators

12.2    Solvable Groups

12.3    Automorphisms of Groups

12.4    Exercises

13   Groups of Matrices                                                                                          

13.1    Exercises

14  An Introduction to Rings                                                                                    

14.1    Domains and Skew Fields

14.2    Left Ideals

14.3    Exercises

15   The Structure Theory of Rings                                                                        

15.1    Ideals

15.2    Noether’s Isomorphism Theorems for Rings

15.3    Exercises

16  The Field of Fractions: A Study in Generalization                              

16.1    Intermediate Rings

16.2    Exercises

17   Polynomials and Euclidean Domains                                                            

17.1    The Ring of Polynomials

17.2    Euclidean Domains

17.3    Unique Factorization

17.4    Exercises

18  Principal Ideal Domains: Induction without Numbers                      

18.1    Prime Ideals

18.2    Noetherian RingsExercises

19  Roots of Polynomials                                                                                             

19.1    Finite Subgroups of Fields

19.2    Primitive Roots of 1

19.3    Exercises

20 Applications: Famous Results from Number Theory                           

20.1    A Theorem of Fermat

20.2    Addendum: “Fermat’s Last Theorem”

20.3    Exercises

21   Irreducible Polynomials                                                                                        

21.1    Polynomials over UFDs

21.2    Eisenstein’s Criterion

21.3    Exercises

22  Field Extensions: Creating Roots of Polynomials                         

22.1    Algebraic Elements

22.2    Finite Field Extensions

22.3    Exercises

23  The Geometric Problems of Antiquity                                                 

23.1    Construction by Straight Edge and Compass

23.2    Algebraic Description of Constructibility

23.3    Solution of the Geometric Problems of Antiquity

23.4    Exercises

24 Adjoining Roots to Polynomials: Splitting Fields                         

24.1    Splitting Fields

24.2    Separable Polynomials and Separable Extensions

24.3    Exercises

25  Finite Fields                                                                                                         

25.1    Uniqueness

25.2    Existence

25.3    Exercises

26 The Galois Correspondence                                                                       

26.1    The Galois Group of a Field Extension

26.2    The Galois Group and Intermediate Fields

26.3    Exercises

27  Applications of the Galois Correspondence                                     

27.1    Finite Separable Field Extensions and the Normal Closure

27.2    The Galois Group of a Polynomial

27.3    Constructible n-gons

27.4    Finite Fields

27.5    The Fundamental Theorem of Algebra

27.6    Exercises

28 Solving Equations by Radicals                                                                  

28.1    Radical Extensions

28.2    Solvable Galois Groups

28.3    Computing the Galois Group

28.4    Exercises

29 Integral Extensions                                                                                                 

29.1    Exercises

30 Group Representations and their Characters                                           

30.1    Exercises

31   Transcendental Numbers: e and p                                                                   

31.1    Transcendence of e

31.2    Transcendence of p

32  Skew Field Theory                                                                                                    

32.1    The Quaternion Algebra

32.2    Polynomials over Skew Fields

32.3    Structure Theorems for Skew Fields

32.4    Exercises

33  Where Do We Go From Here?

33.1    Modules

33.2    Matrix Algebras and their Substructures

33.3    Nonassociative Rings and Algebras

33.4    Hyperfields

33.5    Exercises


Louis Halle Rowen is a professor emeritus in the Department of Mathematics, Bar-Ilan University. He received his PhD from Yale University. His research specialty is noncommutative algebra, in particular division algebras as well as the structure of rings. He is an enthusiastic cellist, having soloed with the Jerusalem Symphony. Prof. Rowen is a fellow of the American Mathematics Society, and has been awarded the Landau Prize, Van Buren Mathematics Prize, and Van Amringe Mathematics Prize.

Uzi Vishne is a professor in the Department of Mathematics, Bar-Ilan University. He holds a PhD from Bar-Ilan University. He is managing editor of the Israel Mathematics Conference Proceedings (IMCP) book series. He has authored or co-authored over seventy papers in algebra, arithmetic, combinatorics, and their applications.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.