Roy | Sources in the Development of Mathematics: Infinite Series and Products from the Fifteenth to the Twenty-First Century | Buch | 978-0-521-11470-7 | sack.de

Buch, Englisch, 994 Seiten, Format (B × H): 183 mm x 260 mm, Gewicht: 2029 g

Roy

Sources in the Development of Mathematics: Infinite Series and Products from the Fifteenth to the Twenty-First Century


Erscheinungsjahr 2011
ISBN: 978-0-521-11470-7
Verlag: CAMBRIDGE

Buch, Englisch, 994 Seiten, Format (B × H): 183 mm x 260 mm, Gewicht: 2029 g

ISBN: 978-0-521-11470-7
Verlag: CAMBRIDGE


The discovery of infinite products by Wallis and infinite series by Newton marked the beginning of the modern mathematical era. It allowed Newton to solve the problem of finding areas under curves defined by algebraic equations, an achievement beyond the scope of the earlier methods of Torricelli, Fermat and Pascal. While Newton and his contemporaries, including Leibniz and the Bernoullis, concentrated on mathematical analysis and physics, Euler's prodigious accomplishments demonstrated that series and products could also address problems in algebra, combinatorics and number theory. In this book, Ranjan Roy describes many facets of the discovery and use of infinite series and products as worked out by their originators, including mathematicians from Asia, Europe and America. The text provides context and motivation for these discoveries, with many detailed proofs, offering a valuable perspective on modern mathematics. Mathematicians, mathematics students, physicists and engineers will all read this book with benefit and enjoyment.

Roy Sources in the Development of Mathematics: Infinite Series and Products from the Fifteenth to the Twenty-First Century jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1. Power series in fifteenth-century Kerala; 2. Sums of powers of integers; 3. Infinite product of Wallis; 4. The binomial theorem; 5. The rectification of curves; 6. Inequalities; 7. Geometric calculus; 8. The calculus of Newton and Leibniz; 9. De Analysi per Aequationes Infinitas; 10. Finite differences: interpolation and quadrature; 11. Series transformation by finite differences; 12. The Taylor series; 13. Integration of rational functions; 14. Difference equations; 15. Differential equations; 16. Series and products for elementary functions; 17. Solution of equations by radicals; 18. Symmetric functions; 19. Calculus of several variables; 20. Algebraic analysis: the calculus of operations; 21. Fourier series; 22. Trigonometric series after 1830; 23. The gamma function; 24. The asymptotic series for ln G(x); 25. The Euler–Maclaurin summation formula; 26. L-series; 27. The hypergeometric series; 28. Orthogonal polynomials; 29. q-Series; 30. Partitions; 31. q-Series and q-orthogonal polynomials; 32. Primes in arithmetic progressions; 33. Distribution of primes: early results; 34. Invariant theory: Cayley and Sylvester; 35. Summability; 36. Elliptic functions: eighteenth century; 37. Elliptic functions: nineteenth century; 38. Irrational and transcendental numbers; 39. Value distribution theory; 40. Univalent functions; 41. Finite fields.


Roy, Ranjan
Ranjan Roy is the Ralph C. Huffer Professor of Mathematics and Astronomy at Beloit College. Roy has published papers and reviews in differential equations, fluid mechanics, Kleinian groups, and the development of mathematics. He co-authored Special Functions (2001) with George Andrews and Richard Askey, and authored chapters in the NIST Handbook of Mathematical Functions (2010). He has received the Allendoerfer prize, the Wisconsin MAA teaching award, and the MAA Haimo award for distinguished mathematics teaching.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.