Sabelfeld / Dimov Monte Carlo Methods and Applications
1. Auflage 2012
ISBN: 978-3-11-029358-6
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Proceedings of the Eighth IMACS Seminar on Monte Carlo Methods, August 29 – September 2, 2011, Borovets, Bulgaria
E-Book, Englisch, 246 Seiten
Reihe: ISSN
ISBN: 978-3-11-029358-6
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Zielgruppe
PhD Students, Researchers; Specialists in Different Fields using Monte Carlo Methods, e.g. Financial Mathematics, Transport of Particles, Semiconductor Simulation; Academic Libraries
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
1;Preface;5
2;1 Improvement of Multi-population Genetic Algorithms Convergence Time;15
2.1;1.1 Introduction;15
2.2;1.2 Short Overview of MpGA Modifications;16
2.3;1.3 Parameter Identification of S. cerevisiae Fed-Batch Cultivation Using Different Kinds of MpGA;18
2.4;1.4 Analysis and Conclusions;21
3;2 Parallelization and Optimization of 4D Binary Mixture Monte Carlo Simulations Using Open MPI and CUDA;25
3.1;2.1 Introduction;25
3.2;2.2 The Metropolis Monte Carlo Method;26
3.3;2.3 Decomposition into Subdomains and the Virtual Topology Using OpenMPI;27
3.4;2.4 Management of Hypersphere Coordinate Migration Between Domains;28
3.4.1;2.4.1 Communication between the CPU and the GPU;29
3.5;2.5 Pseudorandom Number Generation;29
3.6;2.6 Results of Running the Modified Code;29
3.7;2.7 Conclusions;32
4;3 Efficient Implementation of the Heston Model Using GPGPU;35
4.1;3.1 Introduction;35
4.2;3.2 Our GPGPU-Based Algorithm for Option Pricing;37
4.3;3.3 Numerical Results;39
4.4;3.4 Conclusions and Future Work;41
5;4 On a Game-Method for Modeling with Intuitionistic Fuzzy Estimations. Part 2;43
5.1;4.1 Introduction;43
5.2;4.2 Short Remarks on the Game-Method for Modeling from Crisp Point of View;43
5.3;4.3 On the Game-Method for Modeling with Intuitionistic Fuzzy Estimations;45
5.4;4.4 Main Results;48
5.5;4.5 Conclusion;50
6;5 Generalized Nets, ACO Algorithms, and Genetic Algorithms;53
6.1;5.1 Introduction;53
6.2;5.2 ACO and GA;54
6.3;5.3 GN for Hybrid ACO-GA Algorithm;56
6.4;5.4 Conclusion;58
7;6 Bias Evaluation and Reduction for Sample-Path Optimization;61
7.1;6.1 Introduction;61
7.2;6.2 Problem Formulation;63
7.3;6.3 Taylor-Based Bias Correction;65
7.4;6.4 Impact on the Optimization Bias;66
7.5;6.5 Numerical Experiments;67
7.6;6.6 Conclusions;69
8;7 Monte Carlo Simulation of Electron Transport in Quantum Cascade Lasers;73
8.1;7.1 Introduction;73
8.2;7.2 QCL Transport Model;73
8.2.1;7.2.1 Pauli Master Equation;74
8.2.2;7.2.2 Calculation of Basis States;75
8.2.3;7.2.3 Monte Carlo Solver;76
8.3;7.3 Results and Discussion;78
8.4;7.4 Conclusion;79
9;8 Markov Chain Monte Carlo Particle Algorithms for Discrete-Time Nonlinear Filtering;83
9.1;8.1 Introduction;83
9.2;8.2 General Particle Filtering Framework;84
9.3;8.3 High Dimensional Particle Schemes;85
9.3.1;8.3.1 Sequential MCMC Filtering;85
9.3.2;8.3.2 Efficient Sampling in High Dimensions;86
9.3.3;8.3.3 Setting Proposal and Steering Distributions;87
9.4;8.4 Illustrative Examples;87
9.5;8.5 Conclusions;90
10;9 Game-Method for Modeling and WRF-Fire Model Working Together;93
10.1;9.1 Introduction;93
10.2;9.2 Description of the Game-Method for Modeling;94
10.3;9.3 General Description of the Coupled Atmosphere Fire Modeling and WRF-Fire;95
10.4;9.4 Wind Simulation Approach;97
10.5;9.5 Conclusion;98
11;10 Wireless Sensor Network Layout;101
11.1;10.1 Introduction;101
11.2;10.2 Wireless Sensor Network Layout Problem;102
11.3;10.3 ACO for WSN Layout Problem;104
11.4;10.4 Experimental Results;106
11.5;10.5 Conclusion;107
12;11 A Two-Dimensional Lorentzian Distribution for an Atomic Force Microscopy Simulator;111
12.1;11.1 Introduction;111
12.2;11.2 Modeling Oxidation Kinetics;112
12.3;11.3 Development of the Lorentzian Model;114
12.3.1;11.3.1 Algorithm for the Gaussian Model;114
12.3.2;11.3.2 Development of the Lorentzian Model;115
12.4;11.4 Conclusion;117
13;12 Stratified Monte Carlo Integration;119
13.1;12.1 Introduction;119
13.2;12.2 Numerical Integration;120
13.3;12.3 Conclusion;126
14;13 Monte Carlo Simulation of Asymmetric Flow Field Flow Fractionation;129
14.1;13.1 Motivation;129
14.2;13.2 AFFFF;130
14.3;13.3 Mathematical Model and Numerical Algorithm;131
14.3.1;13.3.1 Mathematical Model;131
14.3.2;13.3.2 The MLMC Algorithm;132
14.4;13.4 Numerical Results;133
15;14 Convexization in Markov Chain Monte Carlo;139
15.1;14.1 Introduction;139
15.2;14.2 Auxiliary Functions;140
15.2.1;14.2.1 Definition of Auxiliary Functions;140
15.2.2;14.2.2 Optimization Process for Auxiliary Functions;140
15.2.3;14.2.3 Auxiliary Functions for Convex Functions;142
15.2.4;14.2.4 Objective Function Which Is the Sum of Convex and Concave Functions;142
15.3;14.3 Stochastic Auxiliary Functions;143
15.3.1;14.3.1 Stochastic Convex Learning (Summary);143
15.3.2;14.3.2 Auxiliary Stochastic Functions;144
15.4;14.4 Metropolis-Hastings Auxiliary Algorithm;144
15.5;14.5 Numerical Experiments;145
15.6;14.6 Conclusion;146
16;15 Value Simulation of the Interacting Pair Number for Solution of the Monodisperse Coagulation Equation;149
16.1;15.1 Introduction;149
16.2;15.2 Value Simulation for Integral Equations;151
16.2.1;15.2.1 Value Simulation of the Time Interval Between Interactions;152
16.2.2;15.2.2 VSIPN to Estimate the Monomer Concentration Jh1;153
16.2.3;15.2.3 VSIPN to Estimate the Monomer and Dimer Concentration Jh12;154
16.3;15.3 Results of the Numerical Experiments;155
16.4;15.4 Conclusion;157
17;16 Parallelization of Algorithms for Solving a Three-Dimensional Sudoku Puzzle;159
17.1;16.1 Introduction;159
17.2;16.2 The Simulated Annealing Method;160
17.3;16.3 Successful Algorithms for Solving the Three-Dimensional Puzzle Using MPI;161
17.3.1;16.3.1 An Embarrassingly Parallel Algorithm;162
17.3.2;16.3.2 Distributed Simulated Annealing Using a Master/Worker Organization;163
17.4;16.4 Results;163
17.5;16.5 Conclusions;166
18;17 The Efficiency Study of Splitting and Branching in the Monte Carlo Method;169
18.1;17.1 Introduction;169
18.2;17.2 Randomized Branching;170
18.3;17.3 Splitting;173
19;18 On the Asymptotics of a Lower Bound for the Diaphony of Generalized van der Corput Sequences;177
19.1;18.1 Introduction and Main Result;177
19.2;18.2 Definitions and Previous Results;179
19.3;18.3 Proof of Theorem 18.1;180
20;19 Group Object Tracking with a Sequential Monte Carlo Method Based on a Parameterized Likelihood Function;185
20.1;19.1 Motivation;185
20.2;19.2 Group Object Tracking within the Sequential Monte Carlo Framework;186
20.3;19.3 Measurement Likelihood for Group Object Tracking;187
20.3.1;19.3.1 Introduction of the Notion of the Visible Surface;188
20.3.2;19.3.2 Parametrization of the Visible Surface;189
20.4;19.4 Performance Evaluation;189
20.5;19.5 Conclusions;191
21;20 The Template Design Problem: A Perspective with Metaheuristics;195
21.1;20.1 Introduction;195
21.2;20.2 The Template Design Problem;196
21.3;20.3 Solving the TDP under Deterministic Demand;197
21.3.1;20.3.1 Representation and Evaluation;197
21.3.2;20.3.2 Metaheuristic Approaches;199
21.4;20.4 Experimental Results;200
21.5;20.5 Conclusions and Future Work;204
22;21 A Comparison of Simulated Annealing and Genetic Algorithm Approaches for Cultivation Model Identification;207
22.1;21.1 Introduction;207
22.2;21.2 Genetic Algorithm;208
22.3;21.3 Simulated Annealing;209
22.4;21.4 E. coli MC4110 Fed-Batch Cultivation Process Model;210
22.5;21.5 Numerical Results and Discussion;211
22.6;21.6 Conclusion;212
23;22 Monte Carlo Investigations of Electron Decoherence due to Phonons;217
23.1;22.1 Introduction;217
23.2;22.2 The Algorithms;219
23.2.1;22.2.1 Algorithm A;220
23.2.2;22.2.2 Algorithm B;221
23.2.3;22.2.3 Algorithm C;221
24;23 Geometric Allocation Approach for the Transition Kernel of a Markov Chain;227
24.1;23.1 Introduction;227
24.2;23.2 Geometric Approach;228
24.2.1;23.2.1 Reversible Kernel;230
24.2.2;23.2.2 Irreversible Kernel;231
24.3;23.3 Benchmark Test;231
24.4;23.4 Conclusion;233
25;24 Exact Sampling for the Ising Model at All Temperatures;237
25.1;24.1 Introduction;237
25.2;24.2 The Ising Model;238
25.3;24.3 Exact Sampling;241
25.4;24.4 The Random Cluster Model;242
25.5;24.5 Exact Sampling for the Ising Model;244