Sabelfeld / Simonov Random Fields and Stochastic Lagrangian Models
1. Auflage 2012
ISBN: 978-3-11-029681-5
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Analysis and Applications in Turbulence and Porous Media
E-Book, Englisch, 414 Seiten
ISBN: 978-3-11-029681-5
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Zielgruppe
Researchers, Advanced and Post-graduate Students in Mathematics, Specialists in Environment; Academic Libraries
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
1;Preface;5
2;1 Introduction;17
2.1;1.1 Why random fields?;17
2.2;1.2 Some examples;19
2.3;1.3 Fundamental concepts;24
2.3.1;1.3.1 Random functions in a broad sense;25
2.3.2;1.3.2 Gaussian random vectors;29
2.3.3;1.3.3 Gaussian random functions;30
2.3.4;1.3.4 Random fields;32
2.3.5;1.3.5 Stochastic measures and integrals;33
2.3.6;1.3.6 Integral representation of random functions;35
2.3.7;1.3.7 Random trajectories;37
2.3.8;1.3.8 Stochastic differential, Ito integrals;38
2.3.9;1.3.9 Brownian motion;38
2.3.10;1.3.10 Multidimensional diffusion and Fokker-Planck equation;41
2.3.11;1.3.11 Central limit theorem and convergence of a Poisson process to a Gaussian process;42
3;2 Stochastic simulation of vector Gaussian random fields;45
3.1;2.1 Introduction;45
3.2;2.2 Discrete expansions related to the spectral representations of Gaussian random fields;46
3.2.1;2.2.1 Spectral representations;46
3.2.2;2.2.2 Series expansions;47
3.2.3;2.2.3 Expansion with an even complex orthonormal system;47
3.2.4;2.2.4 Expansion with a real orthonormal system;48
3.2.5;2.2.5 Complex valued orthogonal expansions;49
3.3;2.3 Wavelet expansions;49
3.3.1;2.3.1 Fourier wavelet expansions;50
3.3.2;2.3.2 Wavelet expansion;51
3.3.3;2.3.3 Moving averages;52
3.4;2.4 Randomized spectral models;53
3.4.1;2.4.1 Randomized spectral models defined through stochastic integrals;53
3.4.2;2.4.2 Stratified RSM for homogeneous random fields;55
3.5;2.5 Fourier wavelet models;55
3.5.1;2.5.1 Meyer wavelet functions;56
3.5.2;2.5.2 Evaluation of the coefficients and Fm. and Fm.;56
3.5.3;2.5.3 Cut-off parameters;58
3.5.4;2.5.4 Choice of parameters;59
3.6;2.6 Fourier wavelet models of homogeneous random fields based on randomization of plane wave decomposition;63
3.6.1;2.6.1 Plane wave decomposition of homogeneous random fields;63
3.6.2;2.6.2 Decomposition with fixed nodes;66
3.6.3;2.6.3 Decomposition with randomly distributed nodes;68
3.6.4;2.6.4 Some examples;70
3.6.5;2.6.5 Flow in a porous media in the first order approximation;72
3.6.6;2.6.6 Fourier wavelet models of Gaussian random fields;73
3.7;2.7 Comparison of Fourier wavelet and randomized spectral models;74
3.7.1;2.7.1 Some technical details of RSM;74
3.7.2;2.7.2 Some technical details of FWM;76
3.7.3;2.7.3 Ensemble averaging;78
3.7.4;2.7.4 Space averaging;78
3.8;2.8 Conclusions;79
3.9;2.9 Appendices;81
3.9.1;2.9.1 Appendix A. Positive definiteness of the matrix B;81
3.9.2;2.9.2 Appendix B. Proof of Proposition 2.1;81
4;3 Stochastic Lagrangian models of turbulent flows: Relative dispersion of a pair of fluid particles;86
4.1;3.1 Introduction;86
4.2;3.2 Criticism of 2-particle models;89
4.3;3.3 The quasi-1-dimensional Lagrangian model of relative dispersion;93
4.3.1;3.3.1 Quasi-1-dimensional analog of formula (2.14a);94
4.3.2;3.3.2 Models with a finite-order consistency;96
4.3.3;3.3.3 Explicit form of the model (3.26, 3.27);99
4.3.4;3.3.4 Example;104
4.4;3.4 A 3-dimensional model of relative dispersion;106
4.5;3.5 Lagrangian models consistent with the Eulerian statistics;108
4.5.1;3.5.1 Diffusion approximation;108
4.5.2;3.5.2 Relation to the well-mixed condition;110
4.5.3;3.5.3 A choice of the coefficients ai and bij;111
4.6;3.6 Conclusions;113
5;4 A new Lagrangian model of 2-particle relative turbulent dispersion;114
5.1;4.1 Introduction;114
5.2;4.2 An examination of Durbin’s nonlinear model;114
5.3;4.3 Mathematical formulation of a new model;116
5.4;4.4 A qualitative analysis of the problem (4.14) for symmetric £(r);118
5.4.1;4.4.1 Analysis of the problem (4.14) in the deterministic case;118
5.4.2;4.4.2 Analysis of the problem (4.14) for stochastic £(r);119
5.5;4.5 Qualitative analysis of the problem (4.14) in the general case;124
6;5 The combined Eulerian-Lagrangian model;129
6.1;5.1 Introduction;129
6.2;5.2 2-particle models;133
6.2.1;5.2.1 Eulerian stochastic models of high-Reynolds-number pseudoturbulence;133
6.3;5.3 A new 2-particle Eulerian-Lagrangian stochastic model;136
6.3.1;5.3.1 Formulation of 2-particle Eulerian-Lagrangian model;136
6.3.2;5.3.2 Models for the p.d.f. of the Eulerian relative velocity;139
6.4;5.4 Appendix;141
7;6 Stochastic Lagrangian models for 2-particle relative dispersion in high-Reynolds-number turbulence;145
7.1;6.1 Introduction;145
7.2;6.2 Preliminaries;146
7.3;6.3 A closure of the quasi-1-dimensional model of relative dispersion;147
7.4;6.4 Choice of the model (6.1) for isotropic turbulence;148
7.5;6.5 The model of relative dispersion of two particles in a locally isotropic turbulence;151
7.5.1;6.5.1 Specification of the model;151
7.5.2;6.5.2 Numerical analysis of the Q1D-model (6.30);153
7.6;6.6 Model of the relative dispersion in intermittent locally isotropic turbulence;155
7.7;6.7 Conclusions;157
8;7 Stochastic Lagrangian models for 2-particle motion in turbulent flows. Numerical results;158
8.1;7.1 Introduction;158
8.2;7.2 Classical pseudoturbulence model;159
8.2.1;7.2.1 Randomized model of classical pseudoturbulence;159
8.2.2;7.2.2 Mean square separation of two particles in classical pseudoturbulence;162
8.3;7.3 Calculations by the combined Eulerian-Lagrangian stochastic model;165
8.3.1;7.3.1 Mean square separation of two particles;165
8.3.2;7.3.2 Thomson’s “two-to-one” reduction principle;168
8.3.3;7.3.3 Concentration fluctuations;170
8.4;7.4 Technical remarks;172
8.5;7.5 Conclusion;174
9;8 The 1-particle stochastic Lagrangian model for turbulent dispersion in horizontally homogeneous turbulence;175
9.1;8.1 Introduction;175
9.2;8.2 Choice of the coefficients in the Ito equation;178
9.3;8.3 2D stochastic model with Gaussian p.d.f;180
9.4;8.4 Numerical experiments;183
10;9 Direct and adjoint Monte Carlo for the footprint problem;187
10.1;9.1 Introduction;187
10.2;9.2 Formulation of the problem;188
10.3;9.3 Stochastic Lagrangian algorithm;189
10.3.1;9.3.1 Direct Monte Carlo algorithm;190
10.3.2;9.3.2 Adjoint algorithm;192
10.4;9.4 Impenetrable boundary;194
10.5;9.5 Reacting species;196
10.6;9.6 Numerical simulations;199
10.7;9.7 Conclusion;203
10.8;9.8 Appendices;204
10.8.1;9.8.1 Appendix A. Flux representation;204
10.8.2;9.8.2 Appendix B. Probabilistic representation;204
10.8.3;9.8.3 Appendix C. Forward and backward trajectory estimators;205
11;10 Lagrangian stochastic models for turbulent dispersion in an atmospheric boundary layer;209
11.1;10.1 Introduction;209
11.2;10.2 Neutrally stratified boundary layer;213
11.2.1;10.2.1 General case of Eulerian p.d.f;213
11.2.2;10.2.2 Gaussian p.d.f;216
11.3;10.3 Comparison with other models and measurements;217
11.3.1;10.3.1 Comparison with measurements in an ideally-neutral surface layer (INSL);217
11.3.2;10.3.2 Comparison with the wind tunnel experiment by Raupach and Legg (1983);220
11.4;10.4 Convective case;223
11.5;10.5 Boundary conditions;227
11.6;10.6 Conclusion;228
11.7;10.7 Appendices;229
11.7.1;10.7.1 Appendix A. Derivation of the coefficients in the Gaussian case;229
11.7.2;10.7.2 Appendix B. Relation to other models;231
12;11 Analysis of the relative dispersion of two particles by Lagrangian stochastic models and DNS methods;234
12.1;11.1 Introduction;234
12.2;11.2 Basic assumptions;236
12.2.1;11.2.1 Markov assumption;237
12.2.2;11.2.2 Consistency with the second Kolmogorov similarity hypothesis;237
12.2.3;11.2.3 Thomson’s well-mixed condition;238
12.3;11.3 Well-mixed Lagrangian stochastic models;238
12.3.1;11.3.1 Quadratic-form models;239
12.3.2;11.3.2 Quasi-1-dimensional models;240
13;11.3.3 3-dimensional extension of Q1D models;241
13.1;11.4 Stochastic Lagrangian models based on the moments approximation method;242
13.1.1;11.4.1 Moments approximation conditions;242
13.1.2;11.4.2 Realizability of LS models based on the moments approximation method;243
13.2;11.5 Comparison of different models of relative dispersion for the inertial subrange of a fully developed turbulence;245
13.2.1;11.5.1 Q1D quadratic-form model of Borgas and Yeung;245
13.2.2;11.5.2 Comparison of different models in the inertial subrange;247
13.3;11.6 Comparison of different Q1D models of relative dispersion for modestly large Reynolds number turbulence (Re? ? 240);248
13.3.1;11.6.1 Parametrization of Eulerian statistics;248
13.3.2;11.6.2 Bi-Gaussian p.d.f;250
13.3.3;11.6.3 Q1D quadratic-form model;252
14;12 Evaluation of mean concentration and fluxes in turbulent flows by Lagrangian stochastic models;254
14.1;12.1 Introduction;254
14.2;12.2 Formulation of the problem;255
14.3;12.3 Monte Carlo estimators for the mean concentration and fluxes;259
14.3.1;12.3.1 Forward estimator;260
14.3.2;12.3.2 Modified forward estimators in case of horizontally homogeneous turbulence;261
14.3.3;12.3.3 Backward estimator;266
14.4;12.4 Application to the footprint problem;267
14.5;12.5 Conclusion;269
14.6;12.6 Appendices;269
14.6.1;12.6.1 Appendix A. Representation of concentration in Lagrangian description;269
14.6.2;12.6.2 Appendix B. Relation between forward and backward transition density functions;271
14.6.3;12.6.3 Appendix C. Derivation of the relation between the forward and backward densities;271
15;13 Stochastic Lagrangian footprint calculations over a surface with an abrupt change of roughness height;274
15.1;13.1 Introduction;274
15.2;13.2 The governing equations;275
15.2.1;13.2.1 Evaluation of footprint functions;276
15.3;13.3 Results;279
15.3.1;13.3.1 Footprint functions of concentration and flux;279
15.4;13.4 Discussion and conclusions;292
15.5;13.5 Appendices;293
15.5.1;13.5.1 Appendix A. Dimensionless mean-flow equations;293
15.5.2;13.5.2 Appendix B. Lagrangian stochastic trajectory model;294
16;14 Stochastic flow simulation in 3D porous media;296
16.1;14.1 Introduction;296
16.2;14.2 Formulation of the problem;299
16.3;14.3 Direct numerical simulation method: DSM-SOR;300
16.4;14.4 Randomized spectral model (RSM);302
16.5;14.5 Testing the simulation procedure;304
16.6;14.6 Evaluation of Eulerian and Lagrangian statistical characteristics by the DNS-SOR method;308
16.6.1;14.6.1 Eulerian statistical characteristics;308
16.6.2;14.6.2 Lagrangian statistical characteristics;310
16.7;14.7 Conclusions and discussion;314
17;15 A Lagrangian stochastic model for the transport in statistically homogeneous porous media;316
17.1;15.1 Introduction;316
17.2;15.2 Direct simulation method;317
17.2.1;15.2.1 Random flow model;317
17.2.2;15.2.2 Numerical simulation;319
17.2.3;15.2.3 Evaluation of Eulerian characteristics;322
17.2.4;15.2.4 Evaluation of Lagrangian characteristics;326
17.3;15.3 Construction of the Langevin-type model;330
17.3.1;15.3.1 Introduction;330
17.3.2;15.3.2 Langevin model for an isotropic porous medium;332
17.3.3;15.3.3 Expressions of the drift terms;335
17.4;15.4 Numerical results and comparison against the DSM;337
17.5;15.5 Conclusions;337
18;16 Coagulation of aerosol particles in intermittent turbulent flows;342
18.1;16.1 Introduction;342
18.2;16.2 Analysis of the fluctuations in the size spectrum;345
18.3;16.3 Models of the energy dissipation rate;348
18.3.1;16.3.1 The model by Pope and Chen (P&Ch);348
18.3.2;16.3.2 The model by Borgas and Sawford (B&S);350
18.4;16.4 Monte Carlo simulation for the Smoluchowski equation in a stochastic coagulation regime;351
18.4.1;16.4.1 The total number of clusters and the mean cluster size;353
18.4.2;16.4.2 The functions N3(t) and N10(t);355
18.4.3;16.4.3 The size spectrum N; for different time instances;356
18.4.4;16.4.4 Comparative analysis for two different models of the energy dissipation rate;357
18.5;16.5 The case of a coagulation coefficient with no dependence on the cluster size;358
18.6;16.6 Simulation of coagulation processes in turbulent coagulation regime;359
18.7;16.7 Conclusion;361
18.8;16.8 Appendix. Derivation of the coagulation coefficient;362
19;17 Stokes flows under random boundary velocity excitations;365
19.1;17.1 Introduction;365
19.2;17.2 Exterior Stokes problem;368
19.2.1;17.2.1 Poisson formula in polar coordinates;369
19.3;17.3 K-L expansion of velocity;372
19.3.1;17.3.1 White noise excitations;372
19.3.2;17.3.2 General case of homogeneous excitations;377
19.4;17.4 Correlation function of the pressure;382
19.4.1;17.4.1 White noise excitations;382
19.4.2;17.4.2 Homogeneous random boundary excitations;384
19.4.3;17.4.3 Vorticity and stress tensor;384
19.5;17.5 Interior Stokes problem;388
19.6;17.6 Numerical results;390
20;Bibliography;397
21;Index;413