Buch, Englisch, 495 Seiten, Format (B × H): 152 mm x 229 mm
A Biocompatible Semiconductor for Advanced Biomedical Devices and Applications
Buch, Englisch, 495 Seiten, Format (B × H): 152 mm x 229 mm
ISBN: 978-0-12-810354-8
Verlag: William Andrew Publishing
The main problem facing the medical community today is the lack of biocompatible materials that are also capable of electronic operation. Such devices are currently implemented using silicon technology, which either has to be hermetically sealed so it cannot interact with the body or the material is only stable in vivo for short periods of time.
For long term use (permanent implanted devices such as glucose sensors, brain-machine-interface devices, smart bone and organ implants) a more robust material that the body does not recognize and reject as a foreign (i.e., not organic) material is needed. Silicon Carbide has been proven to be just such a material and will open up a whole new host of fields by allowing the development of advanced biomedical devices never before possible for long-term use in vivo.
This book not only provides the materials and biomedical engineering communities with a seminal reference book on SiC that they can use to further develop the technology, it also provides a technology resource for medical doctors and practitioners who are hungry to identify and implement advanced engineering solutions to their everyday medical problems that currently lack long term, cost effective solutions.
- Discusses Silicon Carbide biomedical materials and technology in terms of their properties, processing, characterization, and application, in one book, from leading professionals and scientists
- Critical assesses existing literature, patents and FDA approvals for clinical trials, enabling the rapid assimilation of important data from the current disparate sources and promoting the transition from technology research and development to clinical trials
- Explores long-term use and applications in vivo in devices and applications with advanced sensing and semiconducting properties, pointing to new product devekipment particularly within brain trauma, bone implants, sub-cutaneous sensors and advanced kidney dialysis devices
Zielgruppe
<p>Biomedical engineers, biochemists, device professionals and related medical specialists searching for a robust biomedical option for implantation with semiconductor effects in terms of selection of SiC materials / sensors / devices / implants for either further research and development and for further product exploitation.</p>
Autoren/Hrsg.
Fachgebiete
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Medizin, Gesundheitswesen Medizintechnik, Biomedizintechnik, Medizinische Werkstoffe
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Medizin, Gesundheitswesen Biomedizin, Medizinische Forschung, Klinische Studien
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Vorklinische Medizin: Grundlagenfächer Biochemie (med.)
- Technische Wissenschaften Sonstige Technologien | Angewandte Technik Medizintechnik, Biomedizintechnik
Weitere Infos & Material
- Silicon Carbide Materials for Biomedical Applications
- SiC Films and Coatings: Amorphous, Polycrystalline, and Single Crystal Forms
- Multifunctional SiC Surfaces: From Passivation to Biofunctionalization
- SiC In Vitro Biocompatibility: Epidermal and Connective Tissue Cells
- Hemocompatibility Assessment of 3C-SiC for Cardiovascular Applications
- Biocompatibility of SiC for Neurological Applications
- SiC for Brain-Machine Interface (BMI)
- Porous SiC Microdialysis Technology
- Biocompatible Sol-Gel Based Nanostructured Hydroxyapatite Coatings on Nano-porous SiC
- Silicon Carbide BioMEMS
- SiC as a Biocompatible Marker for Cell Labeling
- Carbon Based Materials on SiC for Advanced Biomedical Applications