Sakurai / Zhang / Hoshi | Eigenvalue Problems: Algorithms, Software and Applications in Petascale Computing | Buch | 978-3-319-87309-1 | sack.de

Buch, Englisch, Band 117, 313 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 493 g

Reihe: Lecture Notes in Computational Science and Engineering

Sakurai / Zhang / Hoshi

Eigenvalue Problems: Algorithms, Software and Applications in Petascale Computing

EPASA 2015, Tsukuba, Japan, September 2015
Softcover Nachdruck of the original 1. Auflage 2017
ISBN: 978-3-319-87309-1
Verlag: Springer International Publishing

EPASA 2015, Tsukuba, Japan, September 2015

Buch, Englisch, Band 117, 313 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 493 g

Reihe: Lecture Notes in Computational Science and Engineering

ISBN: 978-3-319-87309-1
Verlag: Springer International Publishing


This book provides state-of-the-art and interdisciplinary topics on solving matrix eigenvalue problems, particularly by using recent petascale and upcoming post-petascale supercomputers. It gathers selected topics presented at the International Workshops on Eigenvalue Problems: Algorithms; Software and Applications, in Petascale Computing (EPASA2014 and EPASA2015), which brought together leading researchers working on the numerical solution of matrix eigenvalue problems to discuss and exchange ideas – and in so doing helped to create a community for researchers in eigenvalue problems. The topics presented in the book, including novel numerical algorithms, high-performance implementation techniques, software developments and sample applications, will contribute to various fields that involve solving large-scale eigenvalue problems.

Sakurai / Zhang / Hoshi Eigenvalue Problems: Algorithms, Software and Applications in Petascale Computing jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


An Error Resilience Strategy of a Complex Moment-Based Eigensolver: Akira Imakura, Yasunori Futamura, and Tetsuya Sakurai.- Numerical Integral Eigensolver for a Ring Region on the Complex Plane: Yasuyuki Maeda, Tetsuya Sakurai, James Charles, Michael Povolotskyi, Gerhard Klimeck, and Jose E. Roman.- A Parallel Bisection and Inverse Iteration Solver for a Subset of Eigenpairs of Symmetric Band Matrices: Hiroyuki Ishigami, Hidehiko Hasegawa, Kinji Kimura, and Yoshimasa Nakamura.- The Flexible ILU Preconditioning for Solving Large Nonsymmetric Linear Systems of Equations: Takatoshi Nakamura and Takashi Nodera.- Improved Coefficients for Polynomial Filtering in ESSEX: Martin Galgon, Lukas Krämer, Bruno Lang, Andreas Alvermann, Holger Fehske, Andreas Pieper, Georg Hager, Moritz Kreutzer, Faisal Shahzad, Gerhard Wellein, Achim Basermann, Melven Röhrig-Zöllner, and Jonas Thies.- Eigenspectrum Calculation of the O(a)-improved Wilson-Dirac Operator in Lattice QCD using the Sakurai-Sugiura Method: Hiroya Suno, Yoshifumi Nakamura, Ken-Ichi Ishikawa, Yoshinobu Kuramashi, Yasunori Futamura, Akira Imakura, and Tetsuya Sakurai.- Properties of Definite Bethe–Salpeter Eigenvalue Problems: Meiyue Shao and Chao Yang.- Preconditioned Iterative Methods for Eigenvalue Counts: Eugene Vecharynski and Chao Yang.- Comparison of Tridiagonalization Methods using High-precision Arithmetic with MuPAT: Ryoya Ino, Kohei Asami, Emiko Ishiwata, and Hidehiko Hasegawa.- Computation of Eigenvectors for a Specially Structured Banded Matrix: Hiroshi Takeuchi, Kensuke Aihara, Akiko Fukuda, and Emiko Ishiwata.- Monotonic Convergence to Eigenvalues of Totally Nonnegative Matrices in an Integrable variant of the Discrete Lotka-Volterra System: Akihiko Tobita, Akiko Fukuda, Emiko Ishiwata, Masashi Iwasaki, and Yoshimasa Nakamura.- Accuracy Improvement of the Shifted Block BiCGGR Method for Linear Systems with Multiple Shifts and Multiple Right-Hand Sides: Hiroto Tadano, Shusaku Saito, and Akira Imakura.- Memory-Saving Technique for the Sakurai–Sugiura Eigenvalue Solver using the Shifted Block Conjugate Gradient Method: Yasunori Futamura and Tetsuya Sakurai.- Filter Diagonalization Method by Using a Polynomial of a Resolvent as the Filter for a Real Symmetric-Definite Generalized Eigenproblem: Hiroshi Murakami.- Off-Diagonal Perturbation, First-Order Approximation and Quadratic Residual Bounds for Matrix Eigenvalue Problems: Yuji Nakatsukasa.- An Elementary Derivation of the Projection Method for Nonlinear Eigenvalue Problems Based on Complex Contour Integration: Yusaku Yamamoto.- Fast Multipole Method as a Matrix-Free Hierarchical Low-Rank Approximation: Rio Yokota, Huda Ibeid, and David Keyes.- Recent Progress in Linear Response Eigenvalue Problems: Zhaojun Bai and Ren-Cang Li.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.