Buch, Englisch, 162 Seiten, Format (B × H): 153 mm x 229 mm, Gewicht: 280 g
Buch, Englisch, 162 Seiten, Format (B × H): 153 mm x 229 mm, Gewicht: 280 g
ISBN: 978-0-12-809703-8
Verlag: Elsevier Science Publishing Co Inc
Example-Based Super Resolution provides a thorough introduction and overview of example-based super resolution, covering the most successful algorithmic approaches and theories behind them with implementation insights. It also describes current challenges and explores future trends.
Readers of this book will be able to understand the latest natural image patch statistical models and the performance limits of example-based super resolution algorithms, select the best state-of-the-art algorithmic alternative and tune it for specific use cases, and quickly put into practice implementations of the latest and most successful example-based super-resolution methods.
Zielgruppe
<p>Computer vision scientists and researchers with undergraduate-level statistics knowledge whose work is related to imaging. Machine learning, image processing, and research and development communities.</p>
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Informatik Bildsignalverarbeitung
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
- Technische Wissenschaften Sonstige Technologien | Angewandte Technik Signalverarbeitung, Bildverarbeitung, Scanning
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Computer Vision
Weitere Infos & Material
Chapter 1: Classic Multiframe Super Resolution
Chapter 2: A Taxonomy of Example-Based Super Resolution
Chapter 3: High-Frequency Transfer
Chapter 4: Neighbor Embedding
Chapter 5: Sparse Coding
Chapter 6: Anchored Regression
Chapter 7: Trees and Forests
Chapter 8: Deep Learning
Chapter 9: Conclusions