Buch, Englisch, 592 Seiten, Format (B × H): 191 mm x 235 mm, Gewicht: 1390 g
A Pragmatic Approach
Buch, Englisch, 592 Seiten, Format (B × H): 191 mm x 235 mm, Gewicht: 1390 g
ISBN: 978-0-12-401678-1
Verlag: William Andrew Publishing
Beginning with a survey of fundamental concepts associated with data integration, knowledge representation, and hypothesis generation from heterogeneous data sets, Methods in Biomedical Informatics provides a practical survey of methodologies used in biological, clinical, and public health contexts. These concepts provide the foundation for more advanced topics like information retrieval, natural language processing, Bayesian modeling, and learning classifier systems. The survey of topics then concludes with an exposition of essential methods associated with engineering, personalized medicine, and linking of genomic and clinical data. Within an overall context of the scientific method, Methods in Biomedical Informatics provides a practical coverage of topics that is specifically designed for: (1) domain experts seeking an understanding of biomedical informatics approaches for addressing specific methodological needs; or (2) biomedical informaticians seeking an approachable overview of methodologies that can be used in scenarios germane to biomedical research.
Zielgruppe
<p>Biomedical informaticians seeking methods that can be used in on-going research, and biological and medical practitioners seeking biomedical informatics approaches to address specific needs.</p>
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Bioinformatik
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Computeranwendungen in Wissenschaft & Technologie
- Naturwissenschaften Biowissenschaften Angewandte Biologie Bioinformatik
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Medizin, Gesundheitswesen Medizinische Mathematik & Informatik
Weitere Infos & Material
1. Introduction - Indra Neil Sarkar2. Data Integration: An Overview - Prakash Nadkarni and Luis Marenco3. Knowledge Representation - Mark A. Musen4. Hypothesis Generation from Heterogenous Data Sets - Yves A. Lussier and Haiquan Li5. Geometric Representations in Biomedical Informatics: Applications in Automated Text Analysis - Trevor Cohen and Dominic Widdows6. Biomedical Natural Language Processing and Text Mining - Kevin B. Cohen7. Knowledge Discovery in Biomedical Data: Theory and Methods - John H. Holmes8. Bayesian Methods in Biomedical Data Analysis - Hsun-Hsien Chang and Gil Alterovitz9. Learning Classifier Systems: The Rise of Genetics-Based Machine Learning in Biomedical Data Mining - Ryan J. Urbanowicz and Jason H. Moore10. Engineering Principles in Biomedical Informatics - Riccardo Bellazzi, Matteo Gabetta, Giorgio Leonardi11. Biomedical Informatics Methods for Personalized Medicine and Participatory Health - Fernando Martin-Sanchez, Guillermo Lopez-Campos, Kathleen Gray12. Linking Genomic and Clinical Data for Discovery and Personalized Care - Joshua C. Denny and Hua Xu13. Putting Theory into Practice - Indra Neil Sarkar
AppendicesA1: Unix Primer - Elizabeth S. ChenA2: Ruby Primer - Elizabeth S. ChenA3: Database Primer - Elizabeth S. ChenA4: Web Services - Elizabeth S. Chen