E-Book, Englisch, 610 Seiten
Schmelzer Glass
1. Auflage 2014
ISBN: 978-3-11-029858-1
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Selected Properties and Crystallization
E-Book, Englisch, 610 Seiten
ISBN: 978-3-11-029858-1
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Zielgruppe
Researchers and Advanced Students in Condensed Matter Physics, Ch
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
1;Foreword;5
2;Preface;15
3;List of contributing authorst;21
4;1 Influence of Thermal Prehistory on Crystal Nucleation and Growth in Polymers;23
4.1;1.1 Introduction;23
4.2;1.2 State of the Art;24
4.2.1;1.2.1 Dependence of the Properties of Glass-forming Melts on Melt History;24
4.2.2;1.2.2 Polymer Crystallization;28
4.2.3;1.2.3 Differential Fast Scanning Calorimetry;31
4.3;1.3 Experimental;36
4.3.1;1.3.1 Samples;36
4.3.2;1.3.2 Suppression of Homogeneous Nucleation at Fast Cooling;38
4.3.3;1.3.3 Non-isothermal Ordering Kinetics;50
4.3.4;1.3.4 Isothermal Ordering Kinetics;58
4.3.5;1.3.5 Identification of Different Nuclei Populations;70
4.3.6;1.3.6 Enthalpy Relaxation and Crystal Nucleation in the Glassy State;74
4.3.7;1.3.7 Summary of Experimental Results and Conclusions;94
4.4;1.4 Illumination of the Nucleation and Growth Mechanism;96
4.4.1;1.4.1 Low-temperature Endotherms and Homogeneous Nucleation;96
4.4.2;1.4.2 Some Brief Theoretical Considerations;100
4.5;1.5 Conclusions and Outlook;102
5;2 Early Stages of Crystal Formation in Glass-forming Metallic Alloys;117
5.1;2.1 Introduction;117
5.2;2.2 Marginal Glass-formers;120
5.2.1;2.2.1 Nucleation versus Growth Control;120
5.2.2;2.2.2 Processing Pathway Modifications;123
5.2.3;2.2.3 Nucleation and Growth Kinetics;127
5.2.4;2.2.4 Characterization of the Amorphous Phase;131
5.2.5;2.2.5 Nanocrystal Formation at Temperatures Well Below Tg;137
5.3;2.3 Deformation-induced Nanocrystal Formation;146
5.4;2.4 Bulk Metallic Glasses;149
5.5;2.5 Conclusions and Hypotheses;153
6;3 Crystalline and Amorphous Modifications of Silica: Structure, Thermodynamic Properties, Solubility, and Synthesis;159
6.1;3.1 Introduction;159
6.2;3.2 Properties of Silica Modifications: Literature Search;162
6.2.1;3.2.1 Classical SiO2-literature;163
6.2.2;3.2.2 Original Literature Sources on the Different Silica Modifications;163
6.2.3;3.2.3 Internet Search;164
6.3;3.3 Phase Diagram of SiO2;164
6.3.1;3.3.1 Fenner’s Classical Diagram;164
6.3.2;3.3.2 Flörke’s Diagram;165
6.3.3;3.3.3 Contemporary (p - T )-phase Diagrams of SiO2;166
6.4;3.4 Modifications of SiO2 and Their Synthesis;170
6.4.1;3.4.1 Mineralogical Characteristics of the SiO2-modifications;170
6.4.2;3.4.2 Synthesis of Quartz;170
6.4.3;3.4.3 Synthesis and Stabilization of ß -cristobalite;173
6.4.4;3.4.4 Synthesis of Keatite: Classical Aspects;181
6.4.5;3.4.5 Synthesis of Coesite;182
6.4.6;3.4.6 Stishovite: Synthesis and Thermal Stability;182
6.4.7;3.4.7 Synthesis of Amorphous Modifications of Silica;185
6.5;3.5 Structure and Thermodynamic Properties of the SiO2-modifications;186
6.6;3.6 Solubility of the Different SiO2-modifications;192
6.6.1;3.6.1 General Thermodynamic Dependencies;192
6.6.2;3.6.2 Solubility Diagram of SiO2. Ostwald’s Rule of Stages;197
6.6.3;3.6.3 Solubility of SiO2: Size Effects;203
6.6.4;3.6.4 Different SiO2-modifications at Hydrothermal Conditions: Technological Aspects;205
6.7;3.7 Resources of the Silica Modifications;208
6.7.1;3.7.1 Mineral Resources of Quartz;208
6.7.2;3.7.2 Plant Resources of Silica;209
6.7.3;3.7.3 Industrial Waste as Sources of Silica;210
6.7.4;3.7.4 Coesite and Stishovite as Impactite Remnants;210
6.8;3.8 Some Particularly Interesting Properties of Silica;211
6.9;3.9 General Discussion: Technical Perspectives;212
7;4 The Main Silica Phases and Some of Their Properties;219
7.1;4.1 Introduction;219
7.2;4.2 Specific Properties of Silica Resulting from the Electronic Structure of Silicon;220
7.2.1;4.2.1 Specific Properties of Silica Compounds and Differences as Compared to Chemical Analogs: Silicon and Carbon;220
7.2.2;4.2.2 Electron Structure of the Silicon Atom and its Interaction with Oxygen;223
7.2.3;4.2.3 Consequences of p-Bonding in Silica;224
7.2.4;4.2.4 Increase in Silicon Coordination Number as a Result of s-p-d-hybridization;225
7.2.5;4.2.5 Implication of s-p-d-hybridization for Chemical Reactions and Physical Transformations of Silica;227
7.3;4.3 Phases of Silica and Their Properties;229
7.3.1;4.3.1 Dense Octahedral Silicas: High Pressure Phases;231
7.3.2;4.3.2 Clathrasils: Friable Silica Phases;232
7.3.3;4.3.3 Exception: Fibrous Silica;233
7.3.4;4.3.4 Proper Silicas;233
7.3.5;4.3.5 Main Crystalline Tetrahedral Silicas;235
7.3.6;4.3.6 Amorphous Silica;245
7.3.7;4.3.7 Polyamorphism;247
7.4;4.4 Quartz and Some of Its Properties;250
7.4.1;4.4.1 Enantiomorphism of Quartz;250
7.4.2;4.4.2 Twins (Zwillinge) in Quartz;251
7.4.3;4.4.3 Anisotropy of Quartz;254
7.4.4;4.4.4 Thermal Expansion of Quartz;255
7.4.5;4.4.5 High-Low or (a - ß )-Transformation in Quartz;263
7.4.6;4.4.6 Pressure-induced Amorphization of Crystalline Silica;267
7.5;4.5 Hydrothermal Synthesis of Quartz;267
7.5.1;4.5.1 Brief History;268
7.5.2;4.5.2 Temperature Drop Method;269
7.5.3;4.5.3 Main Problems of Hydrothermal Synthesis of Quartz;272
7.6;4.6 Concluding Remarks;283
7.7;4.7 Appendix: The Crystal Skulls;283
8;5 Chemical Structure of Oxide Glasses: A Concept for Establishing Structure–Property Relationships;291
8.1;5.1 Introduction;291
8.2;5.2 Structural Models;292
8.3;5.3 Thermodynamic Approach;296
8.4;5.4 Concept of Chemical Structure;299
8.5;5.5 Short-range Order;303
8.5.1;5.5.1 Na2O–B2O3 Glasses;303
8.5.2;5.5.2 Li2O–B2O3 Glasses andMelts;305
8.5.3;5.5.3 Na2O–SiO2 Glasses;309
8.5.4;5.5.4 Na2O–B2O3–SiO2 Glasses;311
8.6;5.6 Intermediate-Range Order;311
8.7;5.7 Structure–Property Relationships;315
8.8;5.8 Summary and Conclusions;318
9;6 Bubbles in Silica Melts: Formation, Evolution, and Methods of Removal;323
9.1;Part I: Experimental Data and Basic Mechanisms;323
9.1.1;6.1 Introduction;323
9.1.2;6.2 Sources of Bubbles in Silica Melt and Glass;324
9.1.2.1;6.2.1 Brief Account of the Technology of Silica Glass Production;324
9.1.2.2;6.2.2 Raw Materials as a Source of Bubbles;325
9.1.2.3;6.2.3 Furnace Atmosphere as a Source of Bubbles;327
9.1.2.4;6.2.4 Interaction of Heaters and Form-shaping Equipment with the Melt as Source of Bubbles;330
9.1.2.5;6.2.5 Concentrations of Impurities, Including Dissolved Gases, in Commercial Silica Glasses;330
9.1.2.6;6.2.6 Experimental Study of Formation and Evolution of Bubbles in Silica Melts;331
9.1.3;6.3 Physico-chemical Properties of Silica Melts Influencing the Formation and Evolution of Gas Bubbles;334
9.1.3.1;6.3.1 Surface Tension;334
9.1.3.2;6.3.2 Density;334
9.1.3.3;6.3.3 Viscosity;335
9.1.3.4;6.3.4 Solubility and Diffusion of Gases;337
9.1.4;6.4 Summary to Part I;346
9.2;Part II: Theoretical Analysis and Computer Simulation of the Process;347
9.2.1;6.5 Introduction to Part II;347
9.2.1.1;6.5.1 Main Stages of Fusion of Powdered Silica under Heating and Evolution of Bubble Structure;347
9.2.1.2;6.5.2 Selection of Parameters for the Temperature Dependence Equations that describe the Properties of the Silica Melt Affecting the Kinetics of the Process;348
9.2.2;6.6 Micro-rheological Model and Computer Simulation of the Process;349
9.2.2.1;6.6.1 The Micro-rheological Model of Powder Sintering and Structuring of a Porous Body;350
9.2.2.2;6.6.2 Influence of Some Technological Factors on Formation of Bubble Structure under Heating of Powdered Silica Glass: Computer Simulation of the Process;357
9.2.3;6.7 Summary to Part II;365
9.3;Part III: Mathematical Modeling and Computer Simulation of the Behavior of Gas-Filled Bubbles in Silica Melts;367
9.3.1;6.8 Introduction;367
9.3.2;6.9 Behavior of Isolated Bubbles;369
9.3.3;6.10 Behavior of Solitary Gas-filled Bubbles under Mass Exchange with the Melt;370
9.3.4;6.11 Two-phase Approach to the Description of Mono-disperse Ensembles of Bubbles;373
9.3.5;6.12 Two-phase Approach to the Description of Poly-disperse Ensembles of Bubbles;378
9.3.6;6.13 Diffusion of the Dissolved Gas in the Melt;382
9.3.7;6.14 Relative Motion of Bubbles in the Melt: Modification of the Mathematical Model;386
9.3.8;6.15 Flow of the Melt Governed by the Motion of the Bubbles: Complete System of Equations for Modeling of the Behavior of Gas-filled Bubble Ensembles in the Melt;391
9.3.9;6.16 Summary to Part III;394
10;7 Regularities and Peculiarities in the Crystallization Kinetics of Silica Glass;399
10.1;7.1 Introduction;399
10.2;7.2 Literature Review;403
10.3;7.3 Development of Experimental Techniques;413
10.4;7.4 Basic Phenomenological Features of the Crystallization Processes;416
10.5;7.5 Influence of the Degree of Silica Reduction;420
10.6;7.6 Influence of Concentration of “Structural Water”;424
10.7;7.7 Influence of the Degree of Fusion Penetration of Quartz or Cristobalite Particles on Crystallization of Quartz Glasses;427
10.8;7.8 Influence of Surface Contamination on Crystallization Kinetics;430
10.9;7.9 Influence of the Composition of the Gas Medium on Crystallization of Quartz Glass;433
10.9.1;7.9.1 Introductory Comments;433
10.9.2;7.9.2 On Crystallization in Dry Gas Media;433
10.9.3;7.9.3 Experiments on Crystallization in an Atmosphere Containing Water Vapor;435
10.9.4;7.9.4 Crystallization of Quartz Glass in the Atmosphere of Gases in Equilibrium with the Melt;436
10.10;7.10 Influence of the Drawing Process on the Crystallization Kinetics of Tubes of Quartz Glasses;439
10.11;7.11 Summary of Results and Discussion;444
10.11.1;7.11.1 Introductory Remarks;444
10.11.2;7.11.2 Influence of Surface Reactions on Crystallization;445
10.11.3;7.11.3 Relation Between Crystallization Rate and Viscosity;449
10.12;7.12 Conclusions;457
11;8 Stress-induced Pore Formation and Phase Selection in a Crystallizing Stretched Glass;463
11.1;8.1 Introduction;463
11.2;8.2 Stress Induced Pore Formation and Phase Selection in a Crystallizing Stretched Glass of Regular Shape;465
11.2.1;8.2.1 The Model;465
11.2.2;8.2.2 Experiments;467
11.2.3;8.2.3 Theoretical Interpretation: Classical Nucleation Theory;474
11.2.4;8.2.4 Theoretical Interpretation: Generalized Gibbs Approach;482
11.3;8.3 Sintered Diopside-albite Glass-ceramics Forming Crystallization-induced Porosity;489
11.3.1;8.3.1 Introduction;489
11.3.2;8.3.2 Experimental;490
11.3.3;8.3.3 Results and Discussion;492
12;9 Crystallization of Undercooled Liquids: Results of Molecular Dynamics Simulations;503
12.1;9.1 Introduction;503
12.2;9.2 Thermodynamics and Kinetics of Crystal Formation;506
12.3;9.3 Description of the Systems under Investigation in the Present Study;509
12.3.1;9.3.1 Models;509
12.3.2;9.3.2 Phase Diagram;510
12.4;9.4 Methods of Modeling of Spontaneous Crystallization;511
12.4.1;9.4.1 Mean Life-time Method;511
12.4.2;9.4.2 Mean First-passage Time Method;515
12.4.3;9.4.3 Transition Interface Sampling;518
12.5;9.5 Temperature Dependence of the Interfacial Free Energy Density Crystal-liquid for Planar Interfaces;520
12.5.1;9.5.1 Triple Point;520
12.5.2;9.5.2 Melting Line;521
12.6;9.6 Kinetics of Crystallization in a cLJ-system;525
12.6.1;9.6.1 Crystallization Parameters;525
12.6.2;9.6.2 Nucleation Rate;529
12.6.3;9.6.3 Comparison of Homogeneous Nucleation Theory with Computer Simulation;530
12.6.4;9.6.4 Nucleation in the Region Below the Endpoint of the Melting Line;531
12.7;9.7 Kinetics of Crystallization in the mLJ-system and Free Energy of the Clusters of the Crystalline State;534
12.7.1;9.7.1 Pressure Dependence of the Nucleation Rate;534
12.7.2;9.7.2 Temperature Dependence of the Nucleation Rate;535
12.8;9.8 Discussion and Conclusions;539
13;10 Crystal Nucleation and Growth in Glass-forming Systems: Some New Results and Open Problems;543
13.1;10.1 Introduction;544
13.2;10.2 Consequences of Stochastic Structural Fluctuations in Ultraviscous Melts;549
13.2.1;10.2.1 Structure Fluctuations, Nucleation and Distribution of Relaxation Times;549
13.2.2;10.2.2 Structure Fluctuations and the Notion of Disordered Cluster Formation;550
13.3;10.3 A Case Study: Crystallization Kinetics of a Typical Metal Alloy Melt;557
13.3.1;10.3.1 General Considerations;557
13.3.2;10.3.2 One Experimental Example;559
13.3.3;10.3.3 Theoretical Interpretation in Terms of the KJMA-approach;562
13.3.4;10.3.4 Crystallization on Rate Heating;565
13.3.5;10.3.5 Differences Between Isothermal and Rate-heating Crystallization;568
13.3.6;10.3.6 Origin of the Second Peak for Crystallization on Rate-heating;570
13.4;10.4 Thermal Effects of Crystallization on Its Kinetics;572
13.4.1;10.4.1 General Remarks;572
13.4.2;10.4.2 Rayleigh–Bénard Convection Effects;573
13.4.3;10.4.3 Marangoni or Thermo-capillarity Convection Effect;575
13.5;10.5 Classical and Generalized Gibbs’ Approaches to Cluster Formation and Growth;576
13.5.1;10.5.1 Basic Ideas;576
13.5.2;10.5.2 Application to Nucleation;578
13.5.3;10.5.3 Application to Cluster Growth Processes;584
13.5.4;10.5.4 Thermodynamics versus Kinetics: Ridge Crossing;585
13.6;10.6 Specific Interfacial Energy and the Skapski–Turnbull Relation;590
13.6.1;10.6.1 General Approach to the Determination of the Specific Interfacial Energy: Taylor Expansion;590
13.6.2;10.6.2 Stefan’s Rule and Skapski–Turnbull Relation: Some Interpretation and Extension to Thermodynamic Non-equilibrium States;592
13.7;10.7 Dependence of Crystal Nucleation and Growth Processes on Pre-history;595
13.7.1;10.7.1 Introductory Comments;595
13.7.2;10.7.2 Kinetic Criteria for Glass-formation;596
13.7.3;10.7.3 On the Dependence of the State of the Melt on Cooling and Heating Rates and Its Relevance for Crystal Nucleus Formation and Growth;600
13.8;10.8 Conclusions;601
14;Index;609