Schmelzer | Glass | E-Book | sack.de
E-Book

E-Book, Englisch, 610 Seiten

Schmelzer Glass

Selected Properties and Crystallization
1. Auflage 2014
ISBN: 978-3-11-029858-1
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

Selected Properties and Crystallization

E-Book, Englisch, 610 Seiten

ISBN: 978-3-11-029858-1
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



“This book contains overviews on technologically important classes of glasses, their treatment to achieve desired properties, theoretical approaches for the description of structure-property relationships, and new concepts in the theoretical treatment of crystallization in glass-forming systems. It contains overviews about the state of the art and about specific features for the analysis and application of important classes of glass-forming systems, and describes new developments in theoretical interpretation by well-known glass scientists. Thus, the book offers comprehensive and abundant information that is difficult to come by or has not yet been made public.” Edgar Dutra Zanotto (Center for Research, Technology and Education in Vitreous Materials, Brazil)Glass, written by a team of renowned researchers and experienced book authors in the field, presents general features of glasses and glass transitions. Different classes of glassforming systems, such as silicate glasses, metallic glasses, and polymers, are exemplified. In addition, the wide field of phase formation processes and their effect on glasses and their properties is studied both from a theoretical and experimental point of view.
Schmelzer Glass jetzt bestellen!

Zielgruppe


Researchers and Advanced Students in Condensed Matter Physics, Ch

Weitere Infos & Material


1;Foreword;5
2;Preface;15
3;List of contributing authorst;21
4;1 Influence of Thermal Prehistory on Crystal Nucleation and Growth in Polymers;23
4.1;1.1 Introduction;23
4.2;1.2 State of the Art;24
4.2.1;1.2.1 Dependence of the Properties of Glass-forming Melts on Melt History;24
4.2.2;1.2.2 Polymer Crystallization;28
4.2.3;1.2.3 Differential Fast Scanning Calorimetry;31
4.3;1.3 Experimental;36
4.3.1;1.3.1 Samples;36
4.3.2;1.3.2 Suppression of Homogeneous Nucleation at Fast Cooling;38
4.3.3;1.3.3 Non-isothermal Ordering Kinetics;50
4.3.4;1.3.4 Isothermal Ordering Kinetics;58
4.3.5;1.3.5 Identification of Different Nuclei Populations;70
4.3.6;1.3.6 Enthalpy Relaxation and Crystal Nucleation in the Glassy State;74
4.3.7;1.3.7 Summary of Experimental Results and Conclusions;94
4.4;1.4 Illumination of the Nucleation and Growth Mechanism;96
4.4.1;1.4.1 Low-temperature Endotherms and Homogeneous Nucleation;96
4.4.2;1.4.2 Some Brief Theoretical Considerations;100
4.5;1.5 Conclusions and Outlook;102
5;2 Early Stages of Crystal Formation in Glass-forming Metallic Alloys;117
5.1;2.1 Introduction;117
5.2;2.2 Marginal Glass-formers;120
5.2.1;2.2.1 Nucleation versus Growth Control;120
5.2.2;2.2.2 Processing Pathway Modifications;123
5.2.3;2.2.3 Nucleation and Growth Kinetics;127
5.2.4;2.2.4 Characterization of the Amorphous Phase;131
5.2.5;2.2.5 Nanocrystal Formation at Temperatures Well Below Tg;137
5.3;2.3 Deformation-induced Nanocrystal Formation;146
5.4;2.4 Bulk Metallic Glasses;149
5.5;2.5 Conclusions and Hypotheses;153
6;3 Crystalline and Amorphous Modifications of Silica: Structure, Thermodynamic Properties, Solubility, and Synthesis;159
6.1;3.1 Introduction;159
6.2;3.2 Properties of Silica Modifications: Literature Search;162
6.2.1;3.2.1 Classical SiO2-literature;163
6.2.2;3.2.2 Original Literature Sources on the Different Silica Modifications;163
6.2.3;3.2.3 Internet Search;164
6.3;3.3 Phase Diagram of SiO2;164
6.3.1;3.3.1 Fenner’s Classical Diagram;164
6.3.2;3.3.2 Flörke’s Diagram;165
6.3.3;3.3.3 Contemporary (p - T )-phase Diagrams of SiO2;166
6.4;3.4 Modifications of SiO2 and Their Synthesis;170
6.4.1;3.4.1 Mineralogical Characteristics of the SiO2-modifications;170
6.4.2;3.4.2 Synthesis of Quartz;170
6.4.3;3.4.3 Synthesis and Stabilization of ß -cristobalite;173
6.4.4;3.4.4 Synthesis of Keatite: Classical Aspects;181
6.4.5;3.4.5 Synthesis of Coesite;182
6.4.6;3.4.6 Stishovite: Synthesis and Thermal Stability;182
6.4.7;3.4.7 Synthesis of Amorphous Modifications of Silica;185
6.5;3.5 Structure and Thermodynamic Properties of the SiO2-modifications;186
6.6;3.6 Solubility of the Different SiO2-modifications;192
6.6.1;3.6.1 General Thermodynamic Dependencies;192
6.6.2;3.6.2 Solubility Diagram of SiO2. Ostwald’s Rule of Stages;197
6.6.3;3.6.3 Solubility of SiO2: Size Effects;203
6.6.4;3.6.4 Different SiO2-modifications at Hydrothermal Conditions: Technological Aspects;205
6.7;3.7 Resources of the Silica Modifications;208
6.7.1;3.7.1 Mineral Resources of Quartz;208
6.7.2;3.7.2 Plant Resources of Silica;209
6.7.3;3.7.3 Industrial Waste as Sources of Silica;210
6.7.4;3.7.4 Coesite and Stishovite as Impactite Remnants;210
6.8;3.8 Some Particularly Interesting Properties of Silica;211
6.9;3.9 General Discussion: Technical Perspectives;212
7;4 The Main Silica Phases and Some of Their Properties;219
7.1;4.1 Introduction;219
7.2;4.2 Specific Properties of Silica Resulting from the Electronic Structure of Silicon;220
7.2.1;4.2.1 Specific Properties of Silica Compounds and Differences as Compared to Chemical Analogs: Silicon and Carbon;220
7.2.2;4.2.2 Electron Structure of the Silicon Atom and its Interaction with Oxygen;223
7.2.3;4.2.3 Consequences of p-Bonding in Silica;224
7.2.4;4.2.4 Increase in Silicon Coordination Number as a Result of s-p-d-hybridization;225
7.2.5;4.2.5 Implication of s-p-d-hybridization for Chemical Reactions and Physical Transformations of Silica;227
7.3;4.3 Phases of Silica and Their Properties;229
7.3.1;4.3.1 Dense Octahedral Silicas: High Pressure Phases;231
7.3.2;4.3.2 Clathrasils: Friable Silica Phases;232
7.3.3;4.3.3 Exception: Fibrous Silica;233
7.3.4;4.3.4 Proper Silicas;233
7.3.5;4.3.5 Main Crystalline Tetrahedral Silicas;235
7.3.6;4.3.6 Amorphous Silica;245
7.3.7;4.3.7 Polyamorphism;247
7.4;4.4 Quartz and Some of Its Properties;250
7.4.1;4.4.1 Enantiomorphism of Quartz;250
7.4.2;4.4.2 Twins (Zwillinge) in Quartz;251
7.4.3;4.4.3 Anisotropy of Quartz;254
7.4.4;4.4.4 Thermal Expansion of Quartz;255
7.4.5;4.4.5 High-Low or (a - ß )-Transformation in Quartz;263
7.4.6;4.4.6 Pressure-induced Amorphization of Crystalline Silica;267
7.5;4.5 Hydrothermal Synthesis of Quartz;267
7.5.1;4.5.1 Brief History;268
7.5.2;4.5.2 Temperature Drop Method;269
7.5.3;4.5.3 Main Problems of Hydrothermal Synthesis of Quartz;272
7.6;4.6 Concluding Remarks;283
7.7;4.7 Appendix: The Crystal Skulls;283
8;5 Chemical Structure of Oxide Glasses: A Concept for Establishing Structure–Property Relationships;291
8.1;5.1 Introduction;291
8.2;5.2 Structural Models;292
8.3;5.3 Thermodynamic Approach;296
8.4;5.4 Concept of Chemical Structure;299
8.5;5.5 Short-range Order;303
8.5.1;5.5.1 Na2O–B2O3 Glasses;303
8.5.2;5.5.2 Li2O–B2O3 Glasses andMelts;305
8.5.3;5.5.3 Na2O–SiO2 Glasses;309
8.5.4;5.5.4 Na2O–B2O3–SiO2 Glasses;311
8.6;5.6 Intermediate-Range Order;311
8.7;5.7 Structure–Property Relationships;315
8.8;5.8 Summary and Conclusions;318
9;6 Bubbles in Silica Melts: Formation, Evolution, and Methods of Removal;323
9.1;Part I: Experimental Data and Basic Mechanisms;323
9.1.1;6.1 Introduction;323
9.1.2;6.2 Sources of Bubbles in Silica Melt and Glass;324
9.1.2.1;6.2.1 Brief Account of the Technology of Silica Glass Production;324
9.1.2.2;6.2.2 Raw Materials as a Source of Bubbles;325
9.1.2.3;6.2.3 Furnace Atmosphere as a Source of Bubbles;327
9.1.2.4;6.2.4 Interaction of Heaters and Form-shaping Equipment with the Melt as Source of Bubbles;330
9.1.2.5;6.2.5 Concentrations of Impurities, Including Dissolved Gases, in Commercial Silica Glasses;330
9.1.2.6;6.2.6 Experimental Study of Formation and Evolution of Bubbles in Silica Melts;331
9.1.3;6.3 Physico-chemical Properties of Silica Melts Influencing the Formation and Evolution of Gas Bubbles;334
9.1.3.1;6.3.1 Surface Tension;334
9.1.3.2;6.3.2 Density;334
9.1.3.3;6.3.3 Viscosity;335
9.1.3.4;6.3.4 Solubility and Diffusion of Gases;337
9.1.4;6.4 Summary to Part I;346
9.2;Part II: Theoretical Analysis and Computer Simulation of the Process;347
9.2.1;6.5 Introduction to Part II;347
9.2.1.1;6.5.1 Main Stages of Fusion of Powdered Silica under Heating and Evolution of Bubble Structure;347
9.2.1.2;6.5.2 Selection of Parameters for the Temperature Dependence Equations that describe the Properties of the Silica Melt Affecting the Kinetics of the Process;348
9.2.2;6.6 Micro-rheological Model and Computer Simulation of the Process;349
9.2.2.1;6.6.1 The Micro-rheological Model of Powder Sintering and Structuring of a Porous Body;350
9.2.2.2;6.6.2 Influence of Some Technological Factors on Formation of Bubble Structure under Heating of Powdered Silica Glass: Computer Simulation of the Process;357
9.2.3;6.7 Summary to Part II;365
9.3;Part III: Mathematical Modeling and Computer Simulation of the Behavior of Gas-Filled Bubbles in Silica Melts;367
9.3.1;6.8 Introduction;367
9.3.2;6.9 Behavior of Isolated Bubbles;369
9.3.3;6.10 Behavior of Solitary Gas-filled Bubbles under Mass Exchange with the Melt;370
9.3.4;6.11 Two-phase Approach to the Description of Mono-disperse Ensembles of Bubbles;373
9.3.5;6.12 Two-phase Approach to the Description of Poly-disperse Ensembles of Bubbles;378
9.3.6;6.13 Diffusion of the Dissolved Gas in the Melt;382
9.3.7;6.14 Relative Motion of Bubbles in the Melt: Modification of the Mathematical Model;386
9.3.8;6.15 Flow of the Melt Governed by the Motion of the Bubbles: Complete System of Equations for Modeling of the Behavior of Gas-filled Bubble Ensembles in the Melt;391
9.3.9;6.16 Summary to Part III;394
10;7 Regularities and Peculiarities in the Crystallization Kinetics of Silica Glass;399
10.1;7.1 Introduction;399
10.2;7.2 Literature Review;403
10.3;7.3 Development of Experimental Techniques;413
10.4;7.4 Basic Phenomenological Features of the Crystallization Processes;416
10.5;7.5 Influence of the Degree of Silica Reduction;420
10.6;7.6 Influence of Concentration of “Structural Water”;424
10.7;7.7 Influence of the Degree of Fusion Penetration of Quartz or Cristobalite Particles on Crystallization of Quartz Glasses;427
10.8;7.8 Influence of Surface Contamination on Crystallization Kinetics;430
10.9;7.9 Influence of the Composition of the Gas Medium on Crystallization of Quartz Glass;433
10.9.1;7.9.1 Introductory Comments;433
10.9.2;7.9.2 On Crystallization in Dry Gas Media;433
10.9.3;7.9.3 Experiments on Crystallization in an Atmosphere Containing Water Vapor;435
10.9.4;7.9.4 Crystallization of Quartz Glass in the Atmosphere of Gases in Equilibrium with the Melt;436
10.10;7.10 Influence of the Drawing Process on the Crystallization Kinetics of Tubes of Quartz Glasses;439
10.11;7.11 Summary of Results and Discussion;444
10.11.1;7.11.1 Introductory Remarks;444
10.11.2;7.11.2 Influence of Surface Reactions on Crystallization;445
10.11.3;7.11.3 Relation Between Crystallization Rate and Viscosity;449
10.12;7.12 Conclusions;457
11;8 Stress-induced Pore Formation and Phase Selection in a Crystallizing Stretched Glass;463
11.1;8.1 Introduction;463
11.2;8.2 Stress Induced Pore Formation and Phase Selection in a Crystallizing Stretched Glass of Regular Shape;465
11.2.1;8.2.1 The Model;465
11.2.2;8.2.2 Experiments;467
11.2.3;8.2.3 Theoretical Interpretation: Classical Nucleation Theory;474
11.2.4;8.2.4 Theoretical Interpretation: Generalized Gibbs Approach;482
11.3;8.3 Sintered Diopside-albite Glass-ceramics Forming Crystallization-induced Porosity;489
11.3.1;8.3.1 Introduction;489
11.3.2;8.3.2 Experimental;490
11.3.3;8.3.3 Results and Discussion;492
12;9 Crystallization of Undercooled Liquids: Results of Molecular Dynamics Simulations;503
12.1;9.1 Introduction;503
12.2;9.2 Thermodynamics and Kinetics of Crystal Formation;506
12.3;9.3 Description of the Systems under Investigation in the Present Study;509
12.3.1;9.3.1 Models;509
12.3.2;9.3.2 Phase Diagram;510
12.4;9.4 Methods of Modeling of Spontaneous Crystallization;511
12.4.1;9.4.1 Mean Life-time Method;511
12.4.2;9.4.2 Mean First-passage Time Method;515
12.4.3;9.4.3 Transition Interface Sampling;518
12.5;9.5 Temperature Dependence of the Interfacial Free Energy Density Crystal-liquid for Planar Interfaces;520
12.5.1;9.5.1 Triple Point;520
12.5.2;9.5.2 Melting Line;521
12.6;9.6 Kinetics of Crystallization in a cLJ-system;525
12.6.1;9.6.1 Crystallization Parameters;525
12.6.2;9.6.2 Nucleation Rate;529
12.6.3;9.6.3 Comparison of Homogeneous Nucleation Theory with Computer Simulation;530
12.6.4;9.6.4 Nucleation in the Region Below the Endpoint of the Melting Line;531
12.7;9.7 Kinetics of Crystallization in the mLJ-system and Free Energy of the Clusters of the Crystalline State;534
12.7.1;9.7.1 Pressure Dependence of the Nucleation Rate;534
12.7.2;9.7.2 Temperature Dependence of the Nucleation Rate;535
12.8;9.8 Discussion and Conclusions;539
13;10 Crystal Nucleation and Growth in Glass-forming Systems: Some New Results and Open Problems;543
13.1;10.1 Introduction;544
13.2;10.2 Consequences of Stochastic Structural Fluctuations in Ultraviscous Melts;549
13.2.1;10.2.1 Structure Fluctuations, Nucleation and Distribution of Relaxation Times;549
13.2.2;10.2.2 Structure Fluctuations and the Notion of Disordered Cluster Formation;550
13.3;10.3 A Case Study: Crystallization Kinetics of a Typical Metal Alloy Melt;557
13.3.1;10.3.1 General Considerations;557
13.3.2;10.3.2 One Experimental Example;559
13.3.3;10.3.3 Theoretical Interpretation in Terms of the KJMA-approach;562
13.3.4;10.3.4 Crystallization on Rate Heating;565
13.3.5;10.3.5 Differences Between Isothermal and Rate-heating Crystallization;568
13.3.6;10.3.6 Origin of the Second Peak for Crystallization on Rate-heating;570
13.4;10.4 Thermal Effects of Crystallization on Its Kinetics;572
13.4.1;10.4.1 General Remarks;572
13.4.2;10.4.2 Rayleigh–Bénard Convection Effects;573
13.4.3;10.4.3 Marangoni or Thermo-capillarity Convection Effect;575
13.5;10.5 Classical and Generalized Gibbs’ Approaches to Cluster Formation and Growth;576
13.5.1;10.5.1 Basic Ideas;576
13.5.2;10.5.2 Application to Nucleation;578
13.5.3;10.5.3 Application to Cluster Growth Processes;584
13.5.4;10.5.4 Thermodynamics versus Kinetics: Ridge Crossing;585
13.6;10.6 Specific Interfacial Energy and the Skapski–Turnbull Relation;590
13.6.1;10.6.1 General Approach to the Determination of the Specific Interfacial Energy: Taylor Expansion;590
13.6.2;10.6.2 Stefan’s Rule and Skapski–Turnbull Relation: Some Interpretation and Extension to Thermodynamic Non-equilibrium States;592
13.7;10.7 Dependence of Crystal Nucleation and Growth Processes on Pre-history;595
13.7.1;10.7.1 Introductory Comments;595
13.7.2;10.7.2 Kinetic Criteria for Glass-formation;596
13.7.3;10.7.3 On the Dependence of the State of the Melt on Cooling and Heating Rates and Its Relevance for Crystal Nucleus Formation and Growth;600
13.8;10.8 Conclusions;601
14;Index;609


Jürn W. P. Schmelzer, University of Rostock, Germany.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.