Schölkopf / Luo / Vovk Empirical Inference
2013
ISBN: 978-3-642-41136-6
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Festschrift in Honor of Vladimir N. Vapnik
E-Book, Englisch, 287 Seiten, eBook
ISBN: 978-3-642-41136-6
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Part I - History of Statistical Learning Theory.- Chap. 1 - In Hindsight: Doklady Akademii Nauk SSSR, 181(4), 1968.- Chap. 2 - On the Uniform Convergence of the Frequencies of Occurrence of Events to Their Probabilities.- Chap. 3 - Early History of Support Vector Machines.- Part II - Theory and Practice of Statistical Learning Theory.- Chap. 4 - Some Remarks on the Statistical Analysis of SVMs and Related Methods.- Chap. 5 - Explaining AdaBoost.- Chap. 6 - On the Relations and Differences Between Popper Dimension, Exclusion Dimension and VC-Dimension.- Chap. 7 - On Learnability, Complexity and Stability.- Chap. 8 - Loss Functions.- Chap. 9 - Statistical Learning Theory in Practice.- Chap. 10 - PAC-Bayesian Theory.- Chap. 11 - Kernel Ridge Regression.- Chap. 12 - Multi-task Learning for Computational Biology: Overview and Outlook.- Chap. 13 - Semi-supervised Learning in Causal and Anticausal Settings.- Chap. 14 - Strong Universal Consistent Estimate of the Minimum Mean-Squared Error.- Chap. 15 - The Median Hypothesis.- Chap. 16 - Efficient Transductive Online Learning via Randomized Rounding.- Chap. 17 - Pivotal Estimation in High-Dimensional Regression via Linear Programming.- Chap. 18 - Some Observations on Sparsity Inducing Regularization Methods for Machine Learning.- Chap. 19 - Sharp Oracle Inequalities in Low Rank Estimation.- Chap. 20 - On the Consistency of the Bootstrap Approach for Support Vector Machines and Related Kernel-Based Methods.- Chap. 21 - Kernels, Pre-images and Optimization.- Chap. 22 - Efficient Learning of Sparse Ranking Functions.- Chap. 23 - Direct Approximation of Divergences Between Probability Distributions.- Index.