E-Book, Englisch, Band 13642, 287 Seiten, eBook
Schulz / Trinitis / Papadopoulou Architecture of Computing Systems
1. Auflage 2022
ISBN: 978-3-031-21867-5
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
35th International Conference, ARCS 2022, Heilbronn, Germany, September 13–15, 2022, Proceedings
E-Book, Englisch, Band 13642, 287 Seiten, eBook
Reihe: Lecture Notes in Computer Science
ISBN: 978-3-031-21867-5
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Energy Efficiency.- Energy Efficient Frequency Scaling on GPUs in Heterogeneous HPC Systems.- Dual-IS: Instruction Set Modality for Efficient Instruction Level Parallelism.- Pasithea-1: An Energy-Efficient Self-Contained CGRA With RISC-Like ISA.- Applied Machine Learning.- Orchestrated Co-Scheduling, Resource Partitioning, and Power Capping on CPU-GPU Heterogeneous Systems via Machine Learning.- FPGA-based Dynamic Deep Learning Acceleration for Real-time Video Analytics.- Advanced Computing Techniques.- Effects of Approximate Computing on Workload Characteristics.- QPU-System Co-Design for Quantum HPC Accelerators.- Hardware and Software System Security.- Protected Functions: User Space Privileged Function Calls.- Using Look Up Table Content as Signatures to Identify IP Cores in Modern FPGAs.- Hardware Isolation Support for Low-Cost SoC-FPGAs.- Reliable and Fault-tolerant systems.- Memristor based FPGAs: Understanding the Effect of Configuration Memory Faults.- On the Reliability of Real-time Operating System on Embedded Soft Processor for Space Applications.- Special Track: Organic Computing.- NDNET: a Unified Framework for Anomaly and Novelty Detection.- Organic Computing to Improve the Dependability of an Automotive Environment.- A context aware and self-improving monitoring system for field vegetables.- Semi-Model-Based Reinforcement Learning in Organic Computing Systems.- Deep Reinforcement Learning with a Classifier System – First Steps.- GAE-LCT: A run-time GA-based Classifier Evolution Method for Hardware LCT controlled SoC Performance-Power Optimization.