E-Book, Deutsch, 633 Seiten, eBook
Reihe: Masterclass
Schweizer Partielle Differentialgleichungen
3. Auflage 2023
ISBN: 978-3-662-67188-7
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Eine anwendungsorientierte Einführung
E-Book, Deutsch, 633 Seiten, eBook
Reihe: Masterclass
ISBN: 978-3-662-67188-7
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Upper undergraduate
Autoren/Hrsg.
Weitere Infos & Material
I Einführung und Grundlagen.- 1. Modellierung mit Partiellen Differentialgleichungen.- 2. Erste Eigenschaften von Lösungen.- 3. Grundlagen für einen verallgemeinerten Lösungsbegriff.- 4. Schwache Konvergenz.- II Lineare Elliptische Differentialgleichungen.- 5 Darstellungsformeln.- 6 Energiemethoden.- 7. Maximumprinzipien für elliptische Gleichungen.- 8. Harmonische Funktionen: Weitere Eigenschaften und Verfahren.- III Lineare zeitabhängige Differentialgleichungen.- 9. Darstellungsformeln für Parabolische Gleichungen.- 10.- Zeitabhängige Funktionenräume.- 11 Energiemethoden für Parabolische Gleichungen.- 12. Wellengleichungen.- IV Variationsrechnung.- 13.- Direkte Methode der Variationsrechnung.- 14. Nichtkonvexe Funktionale, Nebenbedingungen.- 15. Konvexe Analysis.- V Fixpunktsätze und Monotone Operatoren.- 16.- Lösung nichtlinearer Gleichungen mit Fixpunktsätzen.- 17. Monotone Operatoren.- 18. Stationäreporöse Medien Gleichungen.- VI Nichtlineare Evolutionsgleichungen.- 19. Quasilineare Gleichungen.- 20. Degenerierte Diffusion.- 21. Eindeutigkeit und Stabilität.- VII Strömungsmechanik.- 22.- Modellierung von Fluiden.- 23. Die Stokes-Gleichung.- 24. Navier–Stokes und Euler-Gleichungen.- VIII Festkörpermechanik.- 25. Modellierung und lineare Theorie.- 26. Nichtlineare Elastizität.- 27. Plastizität.- Anhang.- Literaturverzeichnis.- Sachverzeichnis.