Seedhouse | Martian Outpost | E-Book | www.sack.de
E-Book

E-Book, Englisch, 304 Seiten

Reihe: Space Exploration

Seedhouse Martian Outpost

The Challenges of Establishing a Human Settlement on Mars
1. Auflage 2010
ISBN: 978-0-387-98191-8
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

The Challenges of Establishing a Human Settlement on Mars

E-Book, Englisch, 304 Seiten

Reihe: Space Exploration

ISBN: 978-0-387-98191-8
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



Mars Outpost provides a detailed insight into the various technologies, mission architectures, medical requirements, and training needed to send humans to Mars. It focuses on mission objectives and benefits, and the risks and complexities that are compounded when linked to an overall planet exploration program involving several expeditions and setting up a permanent presence on the surface. The first section provides the background to sending a human mission to Mars. Analogies are made with early polar exploration and the expeditions of Shackleton, Amundsen, and Mawson. The interplanetary plans of the European Space Agency, NASA, and Russia are examined, including the possibility of one or more nations joining forces to send humans to Mars. Current mission architectures, such as NASA's Constellation, ESA's Aurora, and Ross Tierney's DIRECT, are described and evaluated. The next section looks at how humans will get to the Red Planet, beginning with the preparation of the crew. The author examines the various analogues to understand the problems Mars-bound astronauts will face. Additional chapters describe the transportation hardware necessary to launch 4-6 astronauts on an interplanetary trajectory to Mars, including the cutting edge engineering and design of life support systems required to protect crews for more than a year from the lethal radiation encountered in deep space. NASA's current plan is to use standard chemical propulsion technology, but eventually Mars crews will take advantage of advanced propulsion concepts, such as the Variable Specific Impulse Magnetoplasma Rocket, ion drives and nuclear propulsion. The interplanetary options for reaching Mars, as well as the major propulsive maneuvers required and the trajectories and energy requirements for manned and unmanned payloads, are reviewed . Another chapter addresses the daunting medical problems and available countermeasures for humans embarking on a mission to Mars: the insidious effects of radiation on the human body and the deleterious consequences of bone and muscle deconditioning. Crew selection will be considered, bearing in mind the strong possibility that they may not be able to return to Earth. Still another chapter describes the guidance, navigation, and control system architecture, as well as the lander design requirements and crew tasks and responsibilities required to touch down on the Red Planet. Section 3 looks at the surface mission architectures. Seedhouse describes such problems as radiation, extreme temperatures, and construction challenges that will be encountered by colonists. He examines proposed concepts for transporting cargo and astronauts long distances across the Martian surface using magnetic levitation systems, permanent rail systems, and flying vehicles. In the penultimate chapter of the book, the author explains an adaptable and mobile exploration architecture that will enable long-term human exploration of Mars, perhaps making it the next space-based tourist location.

Seedhouse Martian Outpost jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Table of contents ;5
2;Preface;12
3;Acknowledgments;14
4;About the author;16
5;Figures;17
6;Tables;28
7;Abbreviations and acronyms;30
8;1 Why go?;37
8.1;BENEFITS OF TRAVELING TO MARS;41
8.1.1;Science;41
8.1.2;Human expansion;43
8.1.3;International cooperation;44
8.1.4;Technological advancement;44
8.1.5;Human performance;44
8.1.6;Inspiration;45
8.2;THE ROLE OF NASA;45
8.3;THE INEVITABILITY OF HUMANS ON MARS;46
8.4;REFERENCES;47
9;2 Interplanetary plans;48
9.1;EUROPEAN SPACE AGENCY;48
9.1.1;Aurora missions;49
9.1.2;ExoMars;52
9.1.3;Mars Sample Return Mission;53
9.1.4;European politics;53
9.2;RUSSIA AND CHINA;54
9.3;UNITED STATES;57
9.3.1;The new vision;57
9.3.2;American politics;58
9.4;GLOBAL EXPLORATION STRATEGY;59
10;3 Mission architectures;61
10.1;INTERPLANETARY TRAJECTORIES;61
10.1.1;Basic orbital mechanics;61
10.1.2;Trajectory variables;62
10.1.3;Trajectory options;62
10.1.3.1;Hohnann transfer trajectory;62
10.1.3.2;Oppsition trajectory;62
10.1.3.3;Conjunction trajectory;64
10.1.3.4;Conjunction trajectory options;64
10.1.4;Braking into orbit;64
10.1.4.1;Aero assist trajectory;64
10.1.5;In summary;65
10.2;DAS MARSPROJEKT;65
10.2.1;Mission architecture;65
10.3;MARS DIRECT;67
10.3.1;Mars Direct architecture;67
10.3.2;Medical aspects;69
10.3.2.1;Artificial gravity;69
10.3.2.2;Why artificial gravity may not work;69
10.3.3;Surface architecture;69
10.3.4;Radiation and mission risk;70
10.3.5;The pros and cons of Mars Direct;70
10.4;REFERENCE MISSION OF THE MARSDRIVE CONSORTIUM;71
10.4.1;Mission architecture;71
10.4.2;Mission hardware;73
10.4.3;Mission analysis;73
10.5;PROJECT TROY;75
10.5.1;Mission architecture;76
10.5.2;Mission parameters;78
10.5.3;Lift mass and launch requirements;78
10.5.4;Cost and timescale;79
10.5.5;Mission requirements;80
10.5.5.1;Living space;80
10.5.5.2;Life support;80
10.5.5.3;Medical issues;81
10.5.5.4;Surface architecture;81
10.6;EUROPEAN SPACE AGENCY;82
10.6.1;Mission architecture;82
10.7;GLOBAL AEROSPACE CORPORATION;84
10.7.1;Mars transit base;84
10.7.2;Cycling orbits;85
10.7.3;Transit stations;87
10.7.4;Testing the plan;88
10.7.5;Cycler anlyzed;88
10.8;NASA DESIGN REFERENCE MISSION;88
10.9;SPACEWORKS ENGINEERING INS. (SEI);90
10.9.1;Mission architecture;92
10.9.2;Mission parameters;94
10.9.3;Architecture flight hardware;94
10.9.3.1;Crew launch vehicle;94
10.9.3.2;Cargo launch vehicle;94
10.9.3.3;Trans-Mars injections stage;96
10.9.3.4;In-space propulsion stage;97
10.9.3.5;In-space transfer habitats;97
10.9.3.6;Mars Excursion Vehicle elements;99
10.9.4;Entry, descent, landing and Mars ascent;101
10.9.5;Architecture surface hardware;101
10.9.5.1;Mars surface Habitat;101
10.9.5.2;Pressurized rover;102
10.9.6;Architecture masses;103
10.9.7;Mars exploration campaign;103
10.9.8;Mission risk;103
10.10;DIRECT 2.0;104
10.10.1;Jupiter launch system;105
10.10.1.1;Jupiter-120 and Jupiter-232 overview;105
10.10.1.2;The Jupiter launch vehicles;105
10.10.1.3;Payload;106
10.10.2;Intergration and utilization of Shuttle-derved technology;107
10.10.2.1;Solid rocket boosters;107
10.10.2.2;External tank;107
10.10.3;Integration and utilization of existing technology;107
10.10.4;Mission architecture;107
10.11;IN SUMMARY;110
10.12;REFERENCES;111
11;4 Abort modes and the challenges of entry, descent and landing;112
11.1;ABORT OPTIONS;112
11.1.1;Free return trajectory;113
11.2;CHALLENGES OF ENTRY, DESCENT AND LANDING;114
11.2.1;Generic entry, descent and landing sequence;116
11.2.1.1;Exoatmospheric flight;116
11.2.1.2;Entry into Mars' atmosphere;116
11.2.1.3;Entry maneyver;116
11.2.1.4;Parachute descent;116
11.2.1.5;Powered descent;117
11.2.1.6;Touchedown;117
11.2.2;Why landing on Mars won't be easy;117
11.2.2.1;Atmospheric anomalies;117
11.2.2.2;Surface hazards;118
11.2.2.3;Non-redundant systems;118
11.2.2.4;Landing accunracy;118
11.3;RESOLVING THE EDL PROBLEM;120
11.3.1;Approach and entry to Mar' atmosphere;120
11.3.1.1;Aerocapture;120
11.3.1.2;Aerocapture challenges;121
11.3.1.3;Evolved accelration guidance logic for entry (EAGLE);121
11.3.1.4;Aeroshells;122
11.3.1.5;Inflatable aeroshells;123
11.3.1.6;Hypercone;124
11.3.1.7;Ballutes;125
11.3.1.8;Stronger and larger parachutes;126
11.3.1.9;Supersonic retropropulsive systems;126
11.3.2;The Skycrane option;127
11.3.2.1;Concept of operations;127
11.3.3;Space elevator;128
11.4;IN SUMMARY;129
11.5;REFERENCES;130
12;5 Propulsion systems;131
12.1;VARIABLE SPECIFIC IMPULSE MAGNETOPLASMA ROCKET;132
12.1.1;Overview;132
12.1.2;Plasma-based propulsion technology;133
12.1.3;The rocket engine;133
12.1.4;VASIMR today;135
12.2;NUCLEAR PROPULSION;136
12.2.1;History;136
12.2.2;Nuclear thermal propulsion overview;136
12.2.3;Nuclear thermal propulsion technology;136
12.2.4;Nuclear thermal propulsion today;137
12.2.5;Bimodal nuclear thermal rocket (BNTR);137
12.3;LIQUID OXYGEN AUGMENTED NUCLEAR THERMAL REACTOR;138
12.3.1;Technology;138
12.4;MAGNETOPLASMADYNAMIC THRYSTERS;139
12.4.1;Overview;139
12.4.2;Magnetoplasmadynamic thruster technology;139
12.4.3;Magnetoplasmadynamic research today;139
12.5;MAGNETIZED TARGET FUSION;140
12.5.1;Overview;140
12.5.2;Magnetized target fusion technology;140
12.5.3;Magnetized target fusion today;141
12.6;ANTIMATTER;141
12.6.1;Overview;141
12.6.2;Antimatter concept of operations;141
12.6.3;Problems with antimatter;142
12.6.4;Antimatter spaceships;142
12.7;IN SUMMARY;144
12.8;REFERENCES;145
13;6 Mars hardware;146
13.1;MARS MISSION ARCHITECTURE REVIEW;146
13.2;EXPLORATION SYSTEMS ARCHITECTURE STUDY;147
13.3;ARES V;147
13.3.1;Design requirements;147
13.3.2;Ares V overview;148
13.3.3;Ares V core stage prolulsion;149
13.4;ARES I;149
13.4.1;Design history;149
13.4.2;Design endorsement;151
13.4.3;Ares I design;151
13.4.4;Ares I first stage design;152
13.4.5;Ares I upper stage design;152
13.4.6;Ares I avionics;153
13.4.7;Ares I safety systems;153
13.4.8;Ares I test flights;153
13.4.8.1;Nominal mission profile;153
13.4.8.2;Test flights;154
13.4.9;Development problems;154
13.4.9.1;Thrust oscillation;154
13.5;ARES I AND V PROPULSION;155
13.5.1;J-2 and J-2X history;155
13.5.2;J-2X concept of operations;155
13.5.3;J-2X hardware;155
13.6;ORION;156
13.6.1;Concept of operations;156
13.6.2;Orion module overview;156
13.6.3;Designing Orion;157
13.6.3.1;Orion design;157
13.6.4;Orion systems and subsystems;158
13.6.4.1;Vehicle overview;158
13.6.4.2;Vehicle shape;159
13.6.4.3;Vehicle materials;159
13.6.4.4;Vehicle thermal protection;159
13.6.4.5;Vehicle propulsion;160
13.6.4.6;Vehicle power;161
13.6.4.7;Vehicle communications;161
13.6.4.8;Orion's avionics;162
13.6.4.9;Environmental control and lige support system;162
13.6.4.10;Active thermal control system;162
13.6.4.11;Crew living area;163
13.6.4.12;Non-propellant;163
13.6.4.13;Parachute and landing system;163
13.6.4.14;Launch abort system;165
13.6.5;Orion abort modes;166
13.6.6;Risk assessment;168
13.7;TRANS-MARS INJECTION STAGE;169
13.8;IN-SPAGE PROPULSION STAGE;169
13.9;IN-SPACE INFLATTABLE TRANSFER HABITATS (TRASHABS);169
13.9.1;Role;169
13.9.2;Construction;171
13.9.3;Systems;171
13.9.4;Life support;171
13.10;MARS EXCURSION VEHICLE;171
13.10.1;Role;171
13.10.2;Heatshield;172
13.10.3;Descent stage;173
13.10.4;Ascent stage;173
13.11;MARS SURFACE HABITAT;173
13.11.1;Life support system;173
13.11.1.1;Air;174
13.11.1.2;Biomass;175
13.11.1.3;Food;175
13.11.1.4;Thermal;175
13.11.1.5;Waste;175
13.11.1.6;Water;175
13.11.2;Extravehicular activity support;176
13.12;PRESSURIZED ROVER;176
13.13;IN SUMMARY;176
13.14;REFERENCES;176
14;7 Crew selection and training;178
14.1;CREW SELECTION;178
14.1.1;Crew composition;179
14.1.1.1;Crew Size;179
14.1.1.2;Crew roles;179
14.1.1.3;Crew gender;179
14.1.1.4;Crew compatibility;180
14.1.2;Crew selection overview;180
14.1.3;Selection criteria unique to Mars missions;181
14.1.4;Genetic screening;181
14.1.4.1;Rationale;182
14.1.4.2;Types of testing;182
14.1.5;Precautionary surgery;182
14.1.5.1;The appendix;182
14.1.5.2;Appendicitis;183
14.1.5.3;Sepsis;183
14.1.5.4;Medical support;183
14.1.5.5;Appendectomy;183
14.2;CREW TRAINING;184
14.2.1;Basic crew training;184
14.2.2;Pre-Mars mission-related training;185
14.2.3;Pre-Mars mission;186
14.2.4;Mars Mission training;186
14.2.4.1;Emergency training;186
14.2.4.2;Psychological training;187
14.2.4.3;Virtual environment generator training;187
14.2.4.4;Cryopreservation indoctrination;188
14.2.4.5;Hibernation familiarization;188
14.2.4.6;Bioethical training;191
14.3;ANALOG ENVIRONMENTS AS TRAINING TOOLS;193
14.3.1;Antarctica;193
14.3.2;Haughton Mars Project;193
14.3.2.1;Crewmembers;193
14.3.2.2;Environment;194
14.3.3;Mars Desrert Research Station;194
14.3.4;NASA's Extreme Environments Mission Operations Project;196
14.3.4.1;Undersea missions;196
14.3.4.2;Exploraton operations;196
14.3.5;Mars500;197
14.4;IN SUMMARY;198
14.5;REFERENCES;199
15;8 Biomedical and behavioral issues;200
15.1;BIOMEDICAL RISKS;200
15.2;RADIATION;200
15.2.1;Overview;200
15.2.2;Radiation enviroment;201
15.2.2.1;Radiation in deep space;202
15.2.2.2;Martian atmosphere;203
15.2.3;Radiation units;204
15.2.4;Biological risks;204
15.2.4.1;Stochastic effects;205
15.2.4.2;Deterministic effects;205
15.2.4.3;Early systemic effects;205
15.2.4.4;Organ function;205
15.2.4.5;Risk to fertility;205
15.2.4.6;Late effects;206
15.2.4.7;Radiation effects on DNA;206
15.2.4.8;Cancer risks;207
15.2.4.9;Central nervous system effects;207
15.2.4.10;Cataracts;208
15.2.4.11;Risks to brain stem cells;208
15.2.5;Radiation Exposure Guidelines;209
15.2.5.1;NCRP;209
15.2.5.2;NASA's Guidelines;209
15.2.5.3;Calculating the radiation limits for interplanetary space;209
15.2.5.4;Likely dose for Mars astronauts;210
15.2.6;Radiation countermeasures;210
15.2.6.1;Operations;211
15.2.6.2;Shielding;211
15.2.7;Radioprotective agents;213
15.2.7.1;Amifostine and Melatonin;213
15.2.7.2;Genistein;213
15.2.8;Radiation foreccasting;213
15.2.8.1;NASA's Space Radiation Research Program;213
15.3;BONE LOSS;214
15.3.1;Effect of microgravity on the skeletal system;215
15.3.2;Mechanism of bone loss;216
15.3.2.1;Bone composition;216
15.3.2.2;Bone cells;216
15.3.2.3;Bone homeostasis;216
15.3.2.4;Circulatory factors;216
15.3.3;Space radiation-induced bone loss;217
15.3.4;Bone loss;218
15.3.5;Monitoring bone loss;218
15.3.6;Countermeasures to bone demineraliztion;220
15.3.6.1;Pharmacological intervention: osteoporosis drugs;220
15.3.6.2;Improved calcium metabolism;221
15.3.6.3;Pharmacological intervention: synthetic bone;221
15.3.7;Non-pharmacological intervention;221
15.3.7.1;Vitamin D supplementation;221
15.3.7.2;Exercise;222
15.3.7.3;Low-frequency oscillations;222
15.3.8;Bone loss: a summary;223
15.4;MUSCLE LOSS;224
15.5;CARDIOVESCULAR CHANGES;225
15.5.1;Orthostatic intolerance;225
15.5.2;Cardiac Dysfunction;225
15.6;NEUROVESTIBULAR;226
15.6.1;Space Adaptation Syndrome;226
15.6.2;Sensorimotor and locomotion adaption;226
15.7;IMMUNOLOGICAL;226
15.8;BEHAVIORAL ISSUES;227
15.8.1;EXpedition stressors;227
15.8.2;Behavioural problems;228
15.8.2.1;Interpersonal tension and conflict;228
15.8.2.2;Psychological closing, autonomization and displacement;228
15.8.2.3;Boredom;229
15.8.3;Psychiatric disorders;230
15.8.4;Positive effects;230
15.9;REFERENCES;232
16;9 Voyage to Mars;234
16.1;MISSION RISK;235
16.2;PRE-LAUNCH ACTIVITIES;239
16.3;LAUNCH AND INITIAL LOW EARTH ORBIT OPERATIONS;240
16.4;TRANS-MARS INJECTION AND INTERPLANETARY TRAVEL;242
16.4.1;Life and death;242
16.4.2;Sleeping;244
16.4.3;Expedition clothes;245
16.4.4;Hygiene;246
16.4.5;Running to Mars;246
16.4.6;Preparing meals;247
16.4.7;Working en-route;248
16.4.8;External communication;249
16.4.8.1;Personal communication;249
16.4.8.2;Mission communications;249
16.4.9;Getting along;250
16.4.10;Leadership;251
16.4.11;Leisure time;253
16.4.12;Habitability;254
16.4.13;In-flight medical care;254
16.5;ARRIVAL AT MARS AND ORBIT CAPTURE;255
16.6;MARS ENTRY, DESCENT AND LANDING;255
16.6.1;Approach phase;256
16.6.2;Entry/atmospheric deceleration phase;256
16.6.3;Parachute descent phase;256
16.6.4;Powered descent phase;257
16.7;INITIAL SURFACE OPERATIONS;260
16.8;LONG TERM SURFACE OPERATIONS;261
16.9;DEPARTURE PREPARATIONS AND DEPARTURE;261
16.10;RENDEZVOUS, DOCKING AND TRANSFER TO EARTH RETURN VEHICLE;262
16.11;TRANS-EARTH INJECTION AND INTERPLANETARY TRAVEL;263
16.12;EARTH ENTRY, DESCENT AND LANDING;264
16.13;POST LANDING RECOVERY;264
16.13.1;Bone demineralization;264
16.13.2;Muscle atrophy;265
16.13.3;Neurovestibular problems;265
16.14;REFERENCES;267
17;10 Exploration activities and surface systems;268
17.1;SURFACE EXPLORATION;268
17.1.1;Exploration strategy;268
17.1.1.1;Selecting a location to explore;268
17.1.2;Surface exploration considerations;269
17.1.2.1;Mission schedule;269
17.1.3;Surface objectives;271
17.2;SURFACE SYSTEMS;271
17.2.1;Power generation and storage;271
17.2.1.1;Concept of operations;271
17.2.1.2;Design;273
17.2.2;Extravehicular activity;273
17.2.2.1;Bio-Suit;275
17.2.2.2;Bio-Suit instrumentation;275
17.2.3;Life support systems;277
17.2.3.1;Life support system challenges;277
17.2.3.2;Choice of system;277
17.2.3.3;Life support system functions;277
17.2.3.4;Life support requirements;279
17.2.4;Surface habitat;280
17.2.4.1;Inflatable structures;280
17.2.4.2;TransHab project;281
17.2.4.3;Inflatable structurex in Antrarctica;282
17.2.4.4;Surface endoskeletal inflatable module;282
17.2.5;In-situ resource utilization;283
17.2.5.1;Sabatier process;284
17.2.5.2;Carbon dioxide electrolysis;284
17.2.6;Surface mobility;284
17.2.6.1;Robotic rovers;284
17.2.6.2;Pressurized rovers;284
17.3;MARTIAN COMMUNICATION AND NAVIGATION CAPABILITIES;286
17.3.1;Communications overview;286
17.3.2;Surface-based communication network: concept of operations;286
17.3.2.1;Communication and navigation services;286
17.3.2.2;Mobile exploration system;286
17.3.2.3;Mars communication terminals;287
17.3.3;Mars to Earth communication: concept of operation;288
17.3.4;Descent and landing navigation capability;288
17.3.5;Surface mobility navigation capabolity;289
17.3.6;Radiometric time architecture;289
17.3.7;Surface communication systems;289
17.3.8;Surface wireless mesh networking;289
17.4;REFERENCES;290
18;11 Extreme EXPeditionary Architecture;291
18.1;MOBILE, ADAPTABLE SYSTEMS FOR MARS EXPLORATION;291
18.1.1;Revolutionary exploration objectives;292
18.1.2;Extreme EXPeditionary Architecture background;292
18.2;EXP-ARCH VEHICLE DESIGN CONCEPTS;293
18.2.1;Design principles;293
18.2.2;Initial conceptual designs;293
18.2.3;Final vehicle design: MSR Scorpion;294
18.2.3.1;MSR Scorpion exterior design;294
18.2.3.2;MSR drive train and underside features;296
18.2.3.3;MSR Scorpin interior design;296
18.2.4;Final vehicle design: Mini Rover;297
18.3;RADIATION AND SHELTER STRATEGY;298
18.4;ADVANCED COMPOSITE MATERIALS;298
18.4.1;Thermo-sets;298
18.4.2;Three-dimensional braided fabrics;300
18.5;BIOINSPIRED ENGINEERING OF EXPLORATION SYSTEMS;300
18.5.1;Gecko-tech;301
18.5.1.1;Geckos;301
18.5.2;Entomopters;301
18.5.2.1;Flying on Mars;301
18.5.2.2;Entomopter hardware;302
18.5.2.3;Concept of operations;302
18.5.3;Biomorphic explorers;303
18.5.3.1;Sample Biomorphic missions: imaging and site selection;303
18.5.3.2;Sample Biomorphic missions: surface experiments;303
18.5.3.3;Sample Biomorphic missions: aerial reconnaissance;303
18.5.3.4;Sample Biomorphic missions: local and regional sample return;304
18.5.3.5;Sample Biomorphic missions: deployment to the ice cap;304
18.5.4;Yabbies;304
18.6;REFERENCES;305
19;Epilogue;306
20;Glossary;308
20.1;Earth Orbit Rendezvous;308
20.2;Escape Velocity;308
20.3;Human-Rating Requirements;308
20.4;Inclination, Periapsis and Apoapsis;309
20.5;Interplanetary Trajectory and Transfer Orbits;309
20.6;Liquid Propellants;309
20.7;Low Earth Orbit;309
20.8;Orbit Perturbations;310
20.9;Orbital Maneuvers;310
20.10;Orbital Mechanics;310
20.11;Reynolds Number;310
20.12;Rocket Propulsion;310
20.13;Space Architecture;310
20.14;Spacific Impulse;311
20.15;Technology Readiness Levels;311
20.16;Thrust;312
20.17;Trans Earth Injection;312
20.18;Trans Mars Infection;313
21;Index;314



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.