Shanahan | Soft Computing for Knowledge Discovery | Buch | 978-1-4613-6947-9 | sack.de

Buch, Englisch, Band 570, 326 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 534 g

Reihe: The Springer International Series in Engineering and Computer Science

Shanahan

Soft Computing for Knowledge Discovery

Introducing Cartesian Granule Features
Softcover Nachdruck of the original 1. Auflage 2000
ISBN: 978-1-4613-6947-9
Verlag: Springer US

Introducing Cartesian Granule Features

Buch, Englisch, Band 570, 326 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 534 g

Reihe: The Springer International Series in Engineering and Computer Science

ISBN: 978-1-4613-6947-9
Verlag: Springer US


Knowledge discovery is an area of computer science that attempts to uncover interesting and useful patterns in data that permit a computer to perform a task autonomously or assist a human in performing a task more efficiently.

Soft Computing for Knowledge Discovery provides a self-contained and systematic exposition of the key theory and algorithms that form the core of knowledge discovery from a soft computing perspective. It focuses on knowledge representation, machine learning, and the key methodologies that make up the fabric of soft computing - fuzzy set theory, fuzzy logic, evolutionary computing, and various theories of probability (e.g. naïve Bayes and Bayesian networks, Dempster-Shafer theory, mass assignment theory, and others). In addition to describing many state-of-the-art soft computing approaches to knowledge discovery, the author introduces Cartesian granule features and their corresponding learning algorithms as an intuitive approach to knowledge discovery. This new approach embraces the synergistic spirit of soft computing and exploits uncertainty in order to achieve tractability, transparency and generalization. Parallels are drawn between this approach and other well known approaches (such as naive Bayes and decision trees) leading to equivalences under certain conditions.

The approaches presented are further illustrated in a battery of both artificial and real-world problems. Knowledge discovery in real-world problems, such as object recognition in outdoor scenes, medical diagnosis and control, is described in detail. These case studies provide further examples of how to apply the presented concepts and algorithms to practical problems.

The author provides web page access to an online bibliography, datasets, source codes for several algorithms described in the book, and other information.

Soft Computing for Knowledge Discovery is for advanced undergraduates,professionals and researchers in computer science, engineering and business information systems who work or have an interest in the dynamic fields of knowledge discovery and soft computing.

Shanahan Soft Computing for Knowledge Discovery jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


I.- 1 Knowledge Discovery.- II.- 2 Knowledge Representation.- 3 Fuzzy Set Theory.- 4 Fuzzy Logic.- 5 Probability Theory.- 6 Fril - a Support Logic Programming Environment.- III.- 7 Machine Learning.- IV.- 8 Cartesian Granule Features.- 9 Learning Cartesian Granule Feature Models.- V.- 10 Analysis of Cartesian Granule Feature Models.- 11 Applications.- Appendix: Evolutionary Computation.- Glossary of Main Symbols.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.