Shaposhnikova / Maz'ya | Theory of Sobolev Multipliers | Buch | 978-3-642-08902-2 | sack.de

Buch, Englisch, Band 337, 614 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 937 g

Reihe: Grundlehren der mathematischen Wissenschaften

Shaposhnikova / Maz'ya

Theory of Sobolev Multipliers

With Applications to Differential and Integral Operators
1. Auflage. Softcover version of original hardcover Auflage 2009
ISBN: 978-3-642-08902-2
Verlag: Springer

With Applications to Differential and Integral Operators

Buch, Englisch, Band 337, 614 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 937 g

Reihe: Grundlehren der mathematischen Wissenschaften

ISBN: 978-3-642-08902-2
Verlag: Springer


‘I never heard of “Ugli?cation,” Alice ventured to say. ‘What is it?’’ Lewis Carroll, “Alice in Wonderland” Subject and motivation. The present book is devoted to a theory of m- tipliers in spaces of di?erentiable functions and its applications to analysis, partial di?erential and integral equations. By a multiplier acting from one functionspaceS intoanotherS ,wemeanafunctionwhichde?nesabounded 1 2 linear mapping ofS intoS by pointwise multiplication. Thus with any pair 1 2 of spacesS ,S we associate a third one, the space of multipliersM(S?S ) 1 2 1 2 endowed with the norm of the operator of multiplication. In what follows, the role of the spacesS andS is played by Sobolev spaces, Bessel potential 1 2 spaces, Besov spaces, and the like. The Fourier multipliers are not dealt with in this book. In order to emp- size the di?erence between them and the multipliers under consideration, we attach Sobolev’s name to the latter. By coining the term Sobolev multipliers we just hint at various spaces of di?erentiable functions of Sobolev’s type, being fully aware that Sobolev never worked on multipliers. After all, Fourier never did either.

Shaposhnikova / Maz'ya Theory of Sobolev Multipliers jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Description and Properties of Multipliers.- Trace Inequalities for Functions in Sobolev Spaces.- Multipliers in Pairs of Sobolev Spaces.- Multipliers in Pairs of Potential Spaces.- The Space M(B m p ? B l p ) with p > 1.- The Space M(B m 1 ? B l 1).- Maximal Algebras in Spaces of Multipliers.- Essential Norm and Compactness of Multipliers.- Traces and Extensions of Multipliers.- Sobolev Multipliers in a Domain, Multiplier Mappings and Manifolds.- Applications of Multipliers to Differential and Integral Operators.- Differential Operators in Pairs of Sobolev Spaces.- Schrödinger Operator and M(w 1 2 ? w ?1 2).- Relativistic Schrödinger Operator and M(W ½ 2 ? W ?½ 2).- Multipliers as Solutions to Elliptic Equations.- Regularity of the Boundary in L p -Theory of Elliptic Boundary Value Problems.- Multipliers in the Classical Layer Potential Theory for Lipschitz Domains.- Applications of Multipliers to the Theory of Integral Operators.


Vladimir Maz'ya is a professor at the University of Liverpool and professor emeritus at Linkoeping University, a member of the Royal Swedish Academy of Sciences. In 2004 he was awarded the Celsius medal in gold for his outstanding contributions to the theory of partial differential equations and hydrodynamics. Maz'ya published over 400 papers and 15 books in various domains of the theory of differential equations, functional analysis, approximation theory, numerical methods, and applications to mechanics and mathematical physics (for more information see www.mai.liu.se/~vlmaz).

Tatyana Shaposhnikova is a professor at Linkoeping University. She works in function theory, functional analysis and their applications to partial differential and integral equations. The list of her publications contain three books and more than 70 articles. Together with V. Maz'ya she was awarded the Verdaguer Prize of the French Academy of Sciences in 2003 (for more information see www.mai.liu.se/~tasha).



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.