Buch, Englisch, 416 Seiten, Format (B × H): 172 mm x 251 mm, Gewicht: 780 g
Reihe: Wiley - IEEE
Buch, Englisch, 416 Seiten, Format (B × H): 172 mm x 251 mm, Gewicht: 780 g
Reihe: Wiley - IEEE
ISBN: 978-1-118-85156-2
Verlag: Wiley
Design, Control and Application of Modular Multilevel Converters for HVDC Transmission Systems is a comprehensive guide to semiconductor technologies applicable for MMC design, component sizing control, modulation, and application of the MMC technology for HVDC transmission.
Separated into three distinct parts, the first offers an overview of MMC technology, including information on converter component sizing, Control and Communication, Protection and Fault Management, and Generic Modelling and Simulation. The second covers the applications of MMC in offshore WPP, including planning, technical and economic requirements and optimization options, fault management, dynamic and transient stability. Finally, the third chapter explores the applications of MMC in HVDC transmission and Multi Terminal configurations, including Supergrids.
Key features:
- Unique coverage of the offshore application and optimization of MMC-HVDC schemes for the export of offshore wind energy to the mainland.
- Comprehensive explanation of MMC application in HVDC and MTDC transmission technology.
- Detailed description of MMC components, control and modulation, different modeling approaches, converter dynamics under steady-state and fault contingencies including application and housing of MMC in HVDC schemes for onshore and offshore.
- Analysis of DC fault detection and protection technologies, system studies required for the integration of HVDC terminals to offshore wind power plants, and commissioning procedures for onshore and offshore HVDC terminals.
- A set of self-explanatory simulation models for HVDC test cases is available to download from the companion website.
This book provides essential reading for graduate students and researchers, as well as field engineers and professionals who require an in-depth understanding of MMC technology.
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Energietechnik | Elektrotechnik Energieverteilung, Stromnetze
- Technische Wissenschaften Elektronik | Nachrichtentechnik Elektronik Leistungselektronik
- Technische Wissenschaften Energietechnik | Elektrotechnik Windkraftanlagen, Wasserkraftanlagen
- Technische Wissenschaften Energietechnik | Elektrotechnik Elektrotechnik
Weitere Infos & Material
Preface xiii
Acknowledgements xv
About the Companion Website xvii
Nomenclature xix
Introduction 1
1 Introduction to Modular Multilevel Converters 7
1.1 Introduction 7
1.2 The Two-Level Voltage Source Converter 9
1.2.1 Topology and Basic Function 9
1.2.2 Steady-State Operation 12
1.3 Benefits of Multilevel Converters 15
1.4 Early Multilevel Converters 17
1.4.1 Diode Clamped Converters 17
1.4.2 Flying Capacitor Converters 20
1.5 Cascaded Multilevel Converters 23
1.5.1 Submodules and Submodule Strings 23
1.5.2 Modular Multilevel Converter with Half-Bridge Submodules 28
1.5.3 Other Cascaded Converter Topologies 43
1.6 Summary 57
2 Main-Circuit Design 60
2.1 Introduction 60
2.2 Properties and Design Choices of Power Semiconductor Devices for High-Power Applications 61
2.2.1 Historical Overview of the Development Toward Modern Power Semiconductors 61
2.2.2 Basic Conduction Properties of Power Semiconductor Devices 64
2.2.3 P–N Junctions for Blocking 65
2.2.4 Conduction Properties and the Need for Carrier Injection 67
2.2.5 Switching Properties 72
2.2.6 Packaging 73
2.2.7 Reliability of Power Semiconductor Devices 80
2.2.8 Silicon Carbide Power Devices 84
2.3 Medium-Voltage Capacitors for Submodules 92
2.3.1 Design and Fabrication 93
2.3.2 Self-Healing and Reliability 95
2.4 Arm Inductors 96
2.5 Submodule Configurations 98
2.5.1 Existing Half-Bridge Submodule Realizations 99
2.5.2 Clamped Single-Submodule 104
2.5.3 Clamped Double-Submodule 105
2.5.4 Unipolar-Voltage Full-Bridge Submodule 106
2.5.5 Five-Level Cross-Connected Submodule 107
2.5.6 Three-Level Cross-Connected Submodule 107
2.5.7 Double Submodule 108
2.5.8 Semi-Full-Bridge Submodule 109
2.5.9 Soft-Switching Submodules 110
2.6 Choice of Main-Circuit Parameters 112
2.6.1 Main Input Data 112
2.6.2 Choice of Power Semiconductor Devices 114
2.6.3 Choice of the Number of Submodules 115
2.6.4 Choice of Submodule Capacitance 117
2.6.5 Choice of Arm Inductance 117
2.7 Handling of Redundant and Faulty Submodules 118
2.7.1 Method 1 118
2.7.2 Method 2 119
2.7.3 Comparison of Method 1 and Method 2 120
2.7.4 Handling of Redundancy Using IGBT Stacks 121
2.8 Auxiliary Power Supplies for Submodules 121
2.8.1 Using the Submodule Capacitor as Power Source 121
2.8.2 Power Supplies with High-Voltage Inputs 123
2.8.3 The Tapped-Inductor Buck Converter 125
2.9 Start-Up Procedures 126
2.10 Summary 126
3 Dynamics and Control 133
3.1 Introduction 133
3.2 Fundamentals 134
3.2.1 Arms 135
3.2.2 Submodules 135
3.2.3 AC Bus 136
3.2.4 DC Bus 136
3.2.5 Currents 136
3.3 Converter Operating Principle and Averaged Dynamic Model 137
3.3.1 Dynamic Relations for the Currents 137
3.3.2 Selection of the Mean Sum Capacitor Voltages 137
3.3.3 Averaging Principle 138
3.3.4 Ideal Selection of the Insertion Indices 140
3.3.5 Sum-Capacitor-Voltage Ripples 141
3.3.6 Maximum Output Voltage 144
3.3.7 DC-Bus Dynamics 146
3.3.8 Time Delays 148
3.4 Per-Phase Output-Current Control 148
3.4.1 Tracking of a Sinusoidal Reference Using a PI Controller 149
3.4.2 Resonant Filters and Generalized Integrators 150
3.4.3 Tracking of a Sinusoidal Reference Using a PR Controller 152
3.4.4 Parameter Selection for a PR Current Controller 153
3.4.5 Output-Current Controller Design 157
3.5 Arm-Balancing (Internal) Control 161
3.5.1 Circulating-Current Control 163
3.5.2 Direct Voltage Control 163
3.5.3 Closed-Loop Voltage Control 166
3.5.4 Open-Loop Voltage Control 168
3.5.5 Hybrid Voltage Control 172