Sharma / Arikawa | Algorithmic Learning Theory | Buch | 978-3-540-61863-8 | sack.de

Buch, Englisch, 337 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1130 g

Reihe: Lecture Notes in Artificial Intelligence

Sharma / Arikawa

Algorithmic Learning Theory

7th International Workshop, ALT '96, Sydney, Australia, October 23 - 25, 1996. Proceedings
1996
ISBN: 978-3-540-61863-8
Verlag: Springer Berlin Heidelberg

7th International Workshop, ALT '96, Sydney, Australia, October 23 - 25, 1996. Proceedings

Buch, Englisch, 337 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1130 g

Reihe: Lecture Notes in Artificial Intelligence

ISBN: 978-3-540-61863-8
Verlag: Springer Berlin Heidelberg


This book constitutes the refereed proceedings of the 7th International Workshop on Algorithmic Learning Theory, ALT '96, held in Sydney, Australia, in October 1996.
The 16 revised full papers presented were selected from 41 submissions; also included are eight short papers as well as four full length invited contributions by Ross Quinlan, Takeshi Shinohara, Leslie Valiant, and Paul Vitanyi, and an introduction by the volume editors. The book covers all areas related to algorithmic learning theory, ranging from theoretical foundations of machine learning to applications in several areas.
Sharma / Arikawa Algorithmic Learning Theory jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Managing complexity in neuroidal circuits.- Learnability of exclusive-or expansion based on monotone DNF formulas.- Improved bounds about on-line learning of smooth functions of a single variable.- Query learning of bounded-width OBDDs.- Learning a representation for optimizable formulas.- Limits of exact algorithms for inference of minimum size finite state machines.- Genetic fitness optimization using rapidly mixing Markov chains.- The kindest cut: Minimum message length segmentation.- Reducing complexity of decision trees with two variable tests.- The complexity of exactly learning algebraic concepts.- Efficient learning of real time two-counter automata.- Cost-sensitive feature reduction applied to a hybrid genetic algorithm.- Effects of Feature Selection with ‘Blurring’ on neurofuzzy systems.- Boosting first-order learning.- Incorporating hypothetical knowledge into the process of inductive synthesis.- Induction of Constraint Logic Programs.- Constructive learning of translations based on dictionaries.- Inductive logic programming beyond logical implication.- Noise elimination in inductive concept learning: A case study in medical diagnosis.- MML estimation of the parameters of the spherical fisher distribution.- Learning by erasing.- On learning and co-learning of minimal programs.- Inductive inference of unbounded unions of pattern languages from positive data.- A class of prolog programs inferable from positive data.- Vacillatory and BC learning on noisy data.- Transformations that preserve learnability.- Probabilistic limit identification up to “small” sets.- Reflecting inductive inference machines and its improvement by therapy.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.