Shen / Liu / Peters | Medical Image Computing and Computer Assisted Intervention - MICCAI 2019 | Buch | 978-3-030-32247-2 | sack.de

Buch, Englisch, Band 11766, 888 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1375 g

Reihe: Lecture Notes in Computer Science

Shen / Liu / Peters

Medical Image Computing and Computer Assisted Intervention - MICCAI 2019

22nd International Conference, Shenzhen, China, October 13-17, 2019, Proceedings, Part III
1. Auflage 2019
ISBN: 978-3-030-32247-2
Verlag: Springer International Publishing

22nd International Conference, Shenzhen, China, October 13-17, 2019, Proceedings, Part III

Buch, Englisch, Band 11766, 888 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1375 g

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-030-32247-2
Verlag: Springer International Publishing


The six-volume set LNCS 11764, 11765, 11766, 11767, 11768, and 11769 constitutes the refereed proceedings of the 22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019, held in Shenzhen, China, in October 2019.

The 539 revised full papers presented were carefully reviewed and selected from 1730 submissions in a double-blind review process. The papers are organized in the following topical sections:

Part I: optical imaging; endoscopy; microscopy.

Part II: image segmentation; image registration; cardiovascular imaging; growth, development, atrophy and progression.

Part III: neuroimage reconstruction and synthesis; neuroimage segmentation; diffusion weighted magnetic resonance imaging; functional neuroimaging (fMRI); miscellaneous neuroimaging.

Part IV: shape; prediction; detection and localization; machine learning; computer-aided diagnosis; image reconstruction and synthesis.

Part V: computer assisted interventions; MIC meets CAI.

Part VI: computed tomography; X-ray imaging.

Shen / Liu / Peters Medical Image Computing and Computer Assisted Intervention - MICCAI 2019 jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Neuroimage Reconstruction and Synthesis.- Isotropic MRI Super-Resolution Reconstruction with Multi-Scale Gradient Field Prior.- A Two-Stage Multi-Loss Super-Resolution Network For Arterial Spin Labeling Magnetic Resonance Imaging.- Model Learning: Primal Dual Networks for Fast MR imaging.- Model-based Convolutional De-Aliasing Network Learning for Parallel MR Imaging.- Joint Reconstruction of PET + Parallel-MRI in a Bayesian Coupled-Dictionary MRF Framework.- Deep Learning Based Framework for Direct Reconstruction of PET Images.- Nonuniform Variational Network: Deep Learning for Accelerated Nonuniform MR Image Reconstruction.- Reconstruction of Isotropic High-Resolution MR Image from Multiple Anisotropic Scans using Sparse Fidelity Loss and Adversarial Regularization.- Single Image Based Reconstruction of High Field-like MR Images.- Deep Neural Network for QSM Background Field Removal.- RinQ Fingerprinting: Recurrence-informed Quantile Networks for Magnetic Resonance Fingerprinting.- RCA-U-Net: Residual Channel Attention U-Net for Fast Tissue Quantification in Magnetic Resonance Fingerprinting.- GANReDL: Medical Image enhancement using a generative adversarial network with real-order derivative induced loss functions.- Generation of 3D Brain MRI Using Auto-Encoding Generative Adversarial Networks.- Semi-Supervised VAE-GAN for Out-of-Sample Detection Applied to MRI Quality Control.- Disease-Image Specific Generative Adversarial Network for Brain Disease Diagnosis with Incomplete Multi-Modal Neuroimages.- Predicting the Evolution of White Matter Hyperintensities in Brain MRI using Generative Adversarial Networks and Irregularity Map.- CoCa-GAN: Common-feature-learning-based Context-aware Generative Adversarial Network for Glioma Grading.- Degenerative Adversarial NeuroImage Nets: Generating Images that Mimic Disease Progression.- Neuroimage Segmentation.- Scribble-based Hierarchical Weakly Supervised Learning for Brain Tumor Segmentation.- 3D DilatedMulti-Fiber Network for Real-time Brain Tumor Segmentation in MRI.- Refined-Segmentation R-CNN: A Two-stage Convolutional Neural Network for Punctate White Matter Lesion Segmentation in Preterm Infants.- VoteNet: A Deep Learning Label Fusion Method for Multi-Atlas Segmentation.- Weakly Supervised Brain Lesion Segmentation via Attentional Representation Learning.- Scalable Neural Architecture Search for 3D Medical Image Segmentation.- Unified Attentional Generative Adversarial Network for Brain Tumor Segmentation From Multimodal Unpaired Images.- High Resolution Medical Image Segmentation using Data-swapping Method.- X-Net: Brain Stroke Lesion Segmentation Based on Depthwise Separable Convolution and Long-range Dependencies.- Multi-View Semi-supervised 3D Whole Brain Segmentation with a Self-Ensemble Network.- CLCI-Net: Cross-Level Fusion and Context Inference Networks for Lesion Segmentation of Chronic Stroke.- Brain Segmentation from k-space with End-to-end Recurrent Attention Network.- Spatial Warping Network for 3D Segmentation of the Hippocampus in MR Images.- CompareNet: Anatomical Segmentation Network with Deep Non-local Label Fusion.- A Joint 3D+2D Fully Convolutional Framework for Subcortical Segmentation.- U-ReSNet: Ultimate coupling of Registration and Segmentation with deep Nets.- Generative adversarial network for segmentation of motion affected neonatal brain MRI.- Interactive deep editing framework for medical image segmentation.- Multiple Sclerosis Lesion Segmentation with Tiramisu and 2.5D Stacked Slices.- Improving Multi-Atlas Segmentation by Convolutional Neural Network Based Patch Error Estimation.- Unsupervised deep learning for Bayesian brain MRI segmentation.- Online atlasing using an iterative centroid.- ARS-Net: Adaptively Rectified Supervision Network for Automated 3D Ultrasound Image Segmentation.- Complete Fetal Head Compounding from Multi-View 3D Ultrasound.- SegNAS3D: Network Architecture Search with Derivative-Free Global Optimization for 3D Image Segmentation.- Overfitting of neural nets under class imbalance: Analysis and improvements for segmentation.- RSANet: Recurrent Slice-wise Attention Network for Multiple Sclerosis Lesion Segmentation.- Deep Cascaded Attention Networks for Multi-task Brain Tumor Segmentation.- Partially Reversible U-Net for Memory-Efficient Volumetric Image Segmentation.- 3DQ: Compact Quantized Neural Networks for Volumetric Whole Brain Segmentation.- Robust Multimodal Brain Tumor Segmentation via Feature Disentanglement and Gated Fusion.- Multi-task Attention-based Semi-supervised Learning for Medical Image Segmentation.- AssemblyNet: A Novel Deep Decision-Making Process for Whole Brain MRI Segmentation.- Automated Parcellation of the Cortex using Structural Connectome Harmonics.- Hierarchical parcellation of the cerebellum.- Intrinsic Patch-based Cortical Anatomical Parcellation using Graph Convolutional Neural Network on Surface Manifold.- Cortical Surface Parcellation using Spherical Convolutional Neural Networks.- A Soft STAPLE Algorithm Combined with Anatomical Knowledge.- Diffusion Weighted Magnetic Resonance Imaging.- Multi-Stage Image Quality Assessment of Diffusion MRI via Semi-Supervised Nonlocal Residual Networks.- Reconstructing High-Quality Diffusion MRI Data from Orthogonal Slice-Undersampled Data Using Graph Convolutional Neural Networks.- Surface-based Tracking of U-fibers in the Superficial White Matter.- Probing Brain Micro-Architecture by Orientation Distribution Invariant Identification of Diffusion Compartments.- Characterizing Non-Gaussian Diffusion in Heterogeneously Oriented Tissue Microenvironments.- Topographic Filtering of Tractograms as Vector Field Flows.- Enabling Multi-Shell b-Value Generalizability of Data-Driven Diffusion Models with Deep SHORE.- Super-Resolved q-Space Deep Learning.- Joint Identification of Network Hub Nodes by Multivariate Graph Inference.- Deep white matter analysis: fast, consistent tractography segmentation across populations and dMRI acquisitions.- Improved Placental Parameter Estimation Using Data-Driven Bayesian Modelling.- Optimal experimental design



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.