Shmulevich / Dougherty | Genomic Signal Processing | E-Book | sack.de
E-Book

E-Book, Englisch, Band 18, 288 Seiten

Reihe: Princeton Series in Applied Mathematics

Shmulevich / Dougherty Genomic Signal Processing


Erscheinungsjahr 2014
ISBN: 978-1-4008-6526-0
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

E-Book, Englisch, Band 18, 288 Seiten

Reihe: Princeton Series in Applied Mathematics

ISBN: 978-1-4008-6526-0
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



No detailed description available for "Genomic Signal Processing".

Shmulevich / Dougherty Genomic Signal Processing jetzt bestellen!

Weitere Infos & Material


Preface ix

Chapter 1: Biological Foundations

1.1 Genetics 1

1.1.1 Nucleic Acid Structure 2

1.1.2 Genes 5

1.1.3 RNA 6

1.1.4 Transcription 6

1.1.5 Proteins 9

1.1.6 Translation 10

1.1.7 Transcriptional Regulation 12

1.2 Genomics 16

1.2.1 Microarray Technology 17

1.3 Proteomics 20

Bibliography 22

Chapter 2: Deterministic Models of Gene Networks

2.1 Graph Models 23

2.2 Boolean Networks 30

2.2.1 Cell Differentiation and Cellular Functional States 33

2.2.2 Network Properties and Dynamics 35

2.2.3 Network Inference 49

2.3 Generalizations of Boolean Networks 53

2.3.1 Asynchrony 53

2.3.2 Multivalued Networks 56

2.4 Differential Equation Models 59

2.4.1 A Differential Equation Model Incorporating Transcription and Translation 62

2.4.2 Discretization of the Continuous Differential Equation Model 65

Bibliography 70

Chapter 3: Stochastic Models of Gene Networks

3.1 Bayesian Networks 77

3.2 Probabilistic Boolean Networks 83

3.2.1 Definitions 86

3.2.2 Inference 97

3.2.3 Dynamics of PBNs 99

3.2.4 Steady-State Analysis of Instantaneously Random PBNs 113

3.2.5 Relationships of PBNs to Bayesian Networks 119

3.2.6 Growing Subnetworks from Seed Genes 125

3.3 Intervention 129

3.3.1 Gene Intervention 130

3.3.2 Structural Intervention 140

3.3.3 External Control 145

Bibliography 151

Chapter 4: Classification

4.1 Bayes Classifier 160

4.2 Classification Rules 162

4.2.1 Consistent Classifier Design 162

4.2.2 Examples of Classification Rules 166

4.3 Constrained Classifiers 168

4.3.1 Shatter Coefficient 171

4.3.2 VC Dimension 173

4.4 Linear Classification 176

4.4.1 Rosenblatt Perceptron 177

4.4.2 Linear and Quadratic Discriminant Analysis 178

4.4.3 Linear Discriminants Based on Least-Squares Error 180

4.4.4 Support Vector Machines 183

4.4.5 Representation of Design Error for Linear Discriminant Analysis 186

4.4.6 Distribution of the QDA Sample-Based Discriminant 187

4.5 Neural Networks Classifiers 189

4.6 Classification Trees 192

4.6.1 Classification and Regression Trees 193

4.6.2 Strongly Consistent Rules for Data-Dependent Partitioning 194

4.7 Error Estimation 196

4.7.1 Resubstitution 196

4.7.2 Cross-validation 198

4.7.3 Bootstrap 199

4.7.4 Bolstering 201

4.7.5 Error Estimator Performance 204

4.7.6 Feature Set Ranking 207

4.8 Error Correction 209

4.9 Robust Classifiers 213

4.9.1 Optimal Robust Classifiers 214

4.9.2 Performance Comparison for Robust Classifiers 216

Bibliography 221

Chapter 5: Regularization

5.1 Data Regularization 225

5.1.1 Regularized Discriminant Analysis 225

5.1.2 Noise Injection 228

5.2 Complexity Regularization 231

5.2.1 Regularization of the Error 231

5.2.2 Structural Risk Minimization 233

5.2.3 Empirical Complexity 236

5.3 Feature Selection 237

5.3.1 Peaking Phenomenon 237

5.3.2 Feature Selection Algorithms 243

5.3.3 Impact of Error Estimation on Feature Selection 244

5.3.4 Redundancy 245

5.3.5 Parallel Incremental Feature Selection 249

5.3.6 Bayesian Variable Selection 251

5.4 Feature Extraction 254

Bibliography 259

Chapter 6: Clustering

6.1 Examples of Clustering Algorithms 263

6.1.1 Euclidean Distance Clustering 264

6.1.2 Self-Organizing Maps 265

6.1.3 Hierarchical Clustering 266

6.1.4 Model-Based Cluster Operators 268

6.2 Cluster Operators 269

6.2.1 Algorithm Structure 269

6.2.2 Label Operators 271

6.2.3 Bayes Clusterer 273

6.2.4 Distributional Testing of Cluster Operators 274

6.3 Cluster Validation 276

6.3.1 External Validation 276

6.3.2 Internal Validation 277

6.3.3 Instability Index 278

6.3.4 Bayes Factor 280

6.4 Learning Cluster Operators 281

6.4.1 Empirical-Error Cluster Operator 281

6.4.2 Nearest-Neighbor Clustering Rule 283

Bibliography 292

Index 295


Ilya Shmulevich, an associate professor at the Institute for Systems Biology, is the coauthor of Microarray Quality Control and the coeditor of Computational and Statistical Approaches to Genomics. Edward R. Dougherty is professor of electrical and computer engineering and director of the Genomic Signal Processing Laboratory at Texas A&M University, and director of the Computational Biology Division at the Translational Genomics Research Institute. His thirteen previous books include Random Processes for Image and Signal Processing.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.