Shmulevich / Zhang | Computational and Statistical Approaches to Genomics | Buch | 978-0-387-26287-1 | sack.de

Buch, Englisch, 416 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 903 g

Shmulevich / Zhang

Computational and Statistical Approaches to Genomics


2. Auflage 2006
ISBN: 978-0-387-26287-1
Verlag: Springer US

Buch, Englisch, 416 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 903 g

ISBN: 978-0-387-26287-1
Verlag: Springer US


The 2 edition of this book adds 8 new contributors to reflect a modern cutting edge approach to genomics. The expanded scope includes coverage of statistical issues on single nucleotide polymorphism analysis array, CGH analysis, SAGE analysis, gene shaving and related methods for microarray data analysis, and cross-hybridization issues on oligo arrays. The authors of the 17 original chapters have updated the contents of their chapters, including references, on such topics as the development of novel engineering, statistical and computational principles, as well as methods, models, and tools from these disciplines applied to genomics.

Shmulevich / Zhang Computational and Statistical Approaches to Genomics jetzt bestellen!

Zielgruppe


University libraries, researchers in Biology, Bioinformatics, Cancer Research, Signal Processing, Statistics and Biostatistics, Machine Learning, Neural Networks, Pattern Recognition, Industry: pharmaceutical R&D, biotech companies

Weitere Infos & Material


Microarray Image Analysis and Gene Expression Ratio Statistics.- Statistical Considerations in the Assessment of cDNA Microarray Data Obtained Using Amplification.- Sources of Variation in Microarray Experiments.- Studentizing Microarray Data.- Exploratory Clustering of Gene Expression Profiles of Mutated Yeast Strains.- Selecting Informative Genes for Cancer Classification Using Gene Expression Data.- Finding Functional Structures in Ggioma Gene-Expressions Using Gene Shaving Clustering and MDL Principle.- Design Issues and Comparison of Methods for Microarray-Based Classification.- Analyzing Protein Sequences Using Signal Analysis Techniques.- Scale-Dependent Statistics of the Numbers of Transcripts and Protein Sequences Encoded in the Genome.- Statistical Methods in Serial Analysis of Gene Expression (Sage).- Normalized Maximum Likelihood Models for Boolean Regression with Application to Prediction and Classification in Genomics.- Inference of Genetic Regulatory Networks via Best-Fit Extensions.- Regularization and Noise Injection for Improving Genetic Network Models.- Parallel Computation and Visualization Tools for Codetermination Analysis of Multivariate Gene Expression Relations.- Single Nucleotide Polymorphisms and Their Applications.- The Contribution of Alternative Transcription and Alternative Splicing to the Complexity of Mammalian Transcriptomes.- Computational Imaging, and Statistical Analysis of Tissue Microarrays: Quantitative Automated Analysis of Tissue Microarrays.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.