Concepts and Applications
Buch, Englisch, 483 Seiten, Format (B × H): 175 mm x 249 mm, Gewicht: 1247 g
ISBN: 978-3-527-33953-2
Verlag: WILEY-VCH
A comprehensive overview of this rapidly expanding interdisciplinary field of research.
After a short introduction to the basics of magnetism and molecular magnetism, the text goes on to cover specific properties of molecular magnetic materials as well as their current and future applications. Design strategies for acquiring molecular magnetic materials with desired physical properties are discussed, as are such multifunctional materials as high Tc magnets, chiral and luminescent magnets, magnetic sponges as well as photo- and piezo-switching magnets.
The result is an excellent resource for materials scientists, chemists, physicists and crystal engineers either entering or already working in the field.
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
List of Contributors XV
Preface XXI
1 Magnetism 1
Maria Ba³anda and Robert Pe³ka
1.1 Origin of Magnetism 1
1.2 Macroscopic Approach 3
1.3 Units in Magnetism 5
1.4 Ground State of an Ion and Hund’s Rules 6
1.5 An Atom in a Magnetic Field 9
1.6 Mechanisms of Magnetic Interactions 10
1.7 Collective Magnetic State 17
1.8 Applications and Research 26
References 28
2 Molecular Magnetism 29
Michael Shatruk, Silvia Gómez-Coca, and Kim R. Dunbar
2.1 Introduction 29
2.2 Birth of the Topic: Exchange-Coupled Clusters 29
2.3 Evolution of the Topic: Molecule-Based Magnets 31
2.4 Burgeoning Topics: Single-Molecule Magnets 32
2.5 Single-Chain Magnets 37
2.6 Spin Crossover Complexes 40
2.7 Charge Transfer-Induced Spin Transitions 43
2.8 Multifunctional Materials 44
2.9 Future Perspectives 46
References 48
3 High-Spin Molecules 53
Zhao-Ping Ni andMing-Liang Tong
3.1 Introduction 53
3.2 Strategies for High-Spin Molecules 54
3.3 High-Spin Molecules based on d-Metal Ions 60
3.4 High-Spin Molecules Based on f-Metal Ions 67
3.5 High-Spin Molecules Based on d–f Metal Ions 69
3.6 Conclusions and Perspectives 71
References 72
4 Single Molecule Magnets 79
Masahiro Yamashita and Keiichi Katoh
4.1 Introduction 79
4.2 Measurement Techniques 82
4.3 Rational Design of SMMs 91
4.4 Family of SMMs 93
4.5 Conclusions and Perspectives 97
References 98
5 Magnetic Molecules as Spin Qubits 103
Paolo Santini, Stefano Carretta, and Giuseppe Amoretti
5.1 Introduction 103
5.2 Molecular Qubits 107
5.3 Schemes for Two-Qubit Gates 110
5.4 Conclusions and Perspectives 123
Appendix: The Basics 125
List of Acronyms 127
References 127
6 Single-Chain Magnets 131
Kasper S. Pedersen, Alessandro Vindigni, Roberta Sessoli, Claude Coulon, and Rodolphe Clérac
6.1 Introduction 131
6.2 The Very Basics 132
6.3 Synthetic Endeavors Toward SCMs 135
6.4 Theoretical Modeling 141
6.5 New Directions 150
6.6 Conclusions and Perspectives 155
References 156
7 High-Tc Ordered Molecular Magnets 161
Joel S.Miller and Shin-ichi Ohkoshi
7.1 Introduction 161
7.2 TCNE-BasedMolecule-Based Magnets 163
7.3 Prussian Blue Analogs 168
7.4 Hepta- and Octacyanido-based Molecule-based Magnets 174
7.5 Conclusions and Perspectives 180
References 182
8 Thin Layers of Molecular Magnets 187
Andrea Cornia, Daniel R. Talham, and Marco Affronte
8.1 Introductory Remarks 187
8.2 Thin Layers of Single-Molecule Magnets 188
8.3 Thin Layers of Antiferromagnetic Spin Clusters 206
8.4 Thin Layers of High-Spin Cages 209
8.5 Thin Layers of Molecular Magnets with Extended Networks 211
8.6 Conclusions and Perspectives 218
Acknowledgments 220
References 220
9 Spin Crossover Phenomenon in Coordination Compounds 231
Ana B. Gaspar and Birgit Weber
9.1 Introduction 231
9.2 Spin Crossover in the Solid and Liquid States 232
9.3 Multifunctionality in Spin Crossover Compounds 236
9.4 Spin Crossover Phenomenon in Soft Matter 238
9.5 Spin crossover Phenomenon at the Nanoscale 239
9.6 Charge Transport Properties of Single-Spin Crossover Molecules 245
9.7 Conclusion 245
References 246
10 Porous Molecular Magnets 253
Wei-Xiong Zhang,Ming-Hua Zeng, and Xiao-Ming Chen
10.1 Introduction 253
10.2 PMMs with Spin-State Switching 255
10.3 PMMs with Slow Relaxation of Magnetization 258
10.4 PMMs with Long-Range Magnetic Ordering 264
10.5 PMMs with Switching Between Ferromagnetism and Antiferromagnetism 271
10.6 PMMs with the Magnetism-Modified Through Postsynthetic Process 273
10.7 Conclusions and Perspectives 275
References 276
11 Molecular Magnetic Sponges 279
Dawid Pinkowicz, Robet Podgajny, and Barbara Sieklucka
11.1 Introduction 279
11.2 The First Molecular Magnetic Sponge Systems 281
11.3 CN-Bridged Molecular Magnetic Sponges 283
11.4 Molecular Magnetic Sponges with Bridging Ligands Other Than Cyanide 294
11.5 Conclusions and Perspectives 296
References 297
12 Non-CentrosymmetricMolecular Magnets 301
Cyrille Train, Geert Rikken, and Michel Verdaguer
12.1 Introduction 301
12.2 Synthetic Strategies Toward Non-centrosymmetric Magnets (NCM) 304
12.3 Physicochemical Properties of Non-centrosymmetric Magnets 311
12.4 Conclusion 319
Acknowledgment 319
References 319
13 Molecular Photomagnets 323
Corine Mathonière, Hiroko Tokoro, and Shin-ichi Ohkoshi
13.1 Introduction 323
13.2 Photomagnetic Coordination Networks based on [M(CN)x] (x=6 or 8) 325
13.3 Photomagnetic Polynuclear Molecules Based on [M(CN)x] (x=6 or 8) 333
13.4 Conclusions and Perspectives 340
References 341
14 Luminescent Molecular Magnets 345
Mauro Perfetti, Fabrice Pointillart, Olivier Cador, Lorenzo Sorace, and Lahcène Ouahab
14.1 Introduction 345
14.2 Electronic Structure of Lanthanide Ions 346
14.3 Luminescence of Lanthanide Ions 348
14.4 Magnetism of Lanthanide Ions 351
14.5 Synthetic Strategies to Obtain Luminescent SMMs 352
14.6 Luminescent Lanthanide Single Molecule Magnets 356
14.7 NIR Luminescent-Prolate Lanthanides 360
14.8 Conclusions and Perspectives 365
References 365
15 Conductive Molecular Magnets 369
Yoshihiro Sekine,Wataru Kosaka, Kouji Taniguchi, and HitoshiMiyasaka
15.1 Introduction 369
15.2 Design of Metal Complexes with TTF-Containing Ligands 371
15.3 Hybrid Arrangements of Magnetic Layers and Conducting Stacked Layers 379
15.4 Conductive Magnetic Coordination Frameworks 384
15.5 Purely Organic Systems 391
15.6 Conclusions and Perspectives 397
References 397
16 Molecular Multiferroics 405
Thomas T. M. Palstra and Alexey O. Polyakov
16.1 Multiferroicity 405
16.2 Classification of Multiferroic Materials 406
16.3 Classification of Molecular Multiferroics 407
16.4 Metal–Organic Framework Compounds and Hybrid Perovskites 408
16.5 Charge Order Multiferroics 414
16.6 Conclusions and Perspectives 416
References 416
17 Modeling Magnetic Properties with Density Functional Theory-Based Methods 419
Jordi Cirera and Eliseo Ruiz
17.1 Introduction 419
17.2 Theoretical Analysis of Spin Crossover Systems 423
17.3 DFT Methods to Evaluate Exchange Coupling Constants 424
17.4 DFT Methods to Calculate Magnetic Anisotropy Parameters 431
17.5 DFT Approaches to Calculate Transport Through Magnetic Molecules 435
References 439
18 Ab Initio Modeling and Calculations of Magnetic Properties 447
Jürgen Schnack and Coen de Graaf
18.1 Introduction 447
18.2 Ab Initio Calculations 447
18.3 Spin Hamiltonian Calculations 459
References 469
Index 473