Buch, Englisch, 228 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 411 g
ISBN: 978-3-031-43546-1
Verlag: Springer International Publishing
From simulated annealing and genetic algorithms to artificial neural networks, ant colony optimization, and particle swarms, this volume presents a wide range of heuristic methods. Additional approaches such as generalized extreme optimization, particle collision, differential evolution, Luus-Jaakola, and firefly algorithms are also discussed, providing a rich repertoire of tools for tackling challenging problems.
While the applications showcased primarily focus on radiative transfer, their potential extends to various domains, particularly nonlinear and large-scale problems where traditional deterministic methods fall short. With clear and comprehensive presentations, this book empowers readers to adapt each method to their specific needs. Furthermore, practical examples of classical optimization problems and application suggestions are included to enhance your understanding.
This book is suitable to any researcher or practitioner whose interests lie on optimization techniques based in artificial intelligence and bio-inspired algorithms, in fields like Applied Mathematics, Engineering, Computing, and cross-disciplinary areas.
Zielgruppe
Research
Fachgebiete
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Optimierung
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Technische Wissenschaften Technik Allgemein Modellierung & Simulation
- Mathematik | Informatik EDV | Informatik Professionelle Anwendung Computersimulation & Modelle, 3-D Graphik
Weitere Infos & Material
Foreword.- Preface.- Introduction.- Radiative Transfer.- Inverse Problems in Radiative Transfer: An Implicit Formulation.- Computational Intelligence in Optimization Problems.- Simulated Annealing.- Genetic Algorithms.- Artificial Neural Networks.- Ant Colony Optimization.- Artificial Bee Colony Algorithm.- Particle Swarm Optimization.- Generalized Extremal Optimization.- Particle Collision Algorithm.- Differential Evolution.- Luus-Jaakola Algorithm.- Firefly Algorithm.- Application Projects.- Final Considerations.- References.