E-Book, Englisch, 864 Seiten
Reihe: Food Science and Technology
Singh / Heldman Introduction to Food Engineering
4. Auflage 2008
ISBN: 978-0-08-091962-1
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
E-Book, Englisch, 864 Seiten
Reihe: Food Science and Technology
ISBN: 978-0-08-091962-1
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
This fourth edition of this successful textbook succinctly presents the engineering concepts and unit operations used in food processing, in a unique blend of principles with applications. Depth of coverage is very high. The authors use their many years of teaching to present food engineering concepts in a logical progression that covers the standard course curriculum. Both are specialists in engineering and world-renowned. Chapters describe the application of a particular principle followed by the quantitative relationships that define the related processes, solved examples and problems to test understanding.
New chapters on:
-Supplemental processes including filtration, sedimentation, centrifugation, and mixing
-Extrusion processes for foods
-Packaging concepts and shelf life of foods
Expanded information on
Emerging technologies, such as high pressure and pulsed electric field
Transport of granular foods and powders
Process controls and measurements
Design of plate heat exchangers
Impact of fouling in heat transfer processes
Use of dimensional analysis in understanding physical phenomena
R. Paul Singh is a distinguished professor of food engineering at the University of California, Davis. The American Society of Agricultural Engineers (ASAE) awarded him the Young Educator Award in 1986, the Kishida International Award in 2007, and the Massey Ferguson Education Gold Medal Award in 2013. In 2007, Singh was recognized with a Food Engineering Lifetime Achievement Award by the International Association of Engineering and Food.In 2008, Singh was elected to the US National Academy of Engineering 'for innovation and leadership in food engineering research and education.”
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Introduction to Food Engineering;4
3;Copyright Page;5
4;Contents;12
5;About the Authors;6
6;Foreword;8
7;Preface;10
8;CHAPTER 1 Introduction;24
8.1;1.1 Dimensions;24
8.2;1.2 Engineering Units;25
8.2.1;1.2.1 Base Units;25
8.2.2;1.2.2 Derived Units;26
8.2.3;1.2.3 Supplementary Units;27
8.3;1.3 System;33
8.4;1.4 State of a System;34
8.4.1;1.4.1 Extensive Properties;35
8.4.2;1.4.2 Intensive Properties;36
8.5;1.5 Density;36
8.6;1.6 Concentration;38
8.7;1.7 Moisture Content;40
8.8;1.8 Temperature;43
8.9;1.9 Pressure;45
8.10;1.10 Enthalpy;49
8.11;1.11 Equation of State and Perfect Gas Law;49
8.12;1.12 Phase Diagram of Water;50
8.13;1.13 Conservation of Mass;52
8.13.1;1.13.1 Conservation of Mass for an Open System;53
8.13.2;1.13.2 Conservation of Mass for a Closed System;55
8.14;1.14 Material Balances;55
8.15;1.15 Thermodynamics;64
8.16;1.16 Laws of Thermodynamics;65
8.16.1;1.16.1 First Law of Thermodynamics;65
8.16.2;1.16.2 Second Law of Thermodynamics;65
8.17;1.17 Energy;66
8.18;1.18 Energy Balance;68
8.19;1.19 Energy Balance for a Closed System;68
8.19.1;1.19.1 Heat;68
8.19.2;1.19.2 Work;69
8.20;1.20 Energy Balance for an Open System;78
8.20.1;1.20.1 Energy Balance for Steady Flow Systems;79
8.21;1.21 A Total Energy Balance;79
8.22;1.22 Power;82
8.23;1.23 Area;82
8.24;Problems;83
8.25;List of Symbols;85
8.26;Bibliography;86
9;CHAPTER 2 Fluid Flow in Food Processing;88
9.1;2.1 Liquid Transport Systems;89
9.1.1;2.1.1 Pipes for Processing Plants;90
9.1.2;2.1.2 Types of Pumps;91
9.2;2.2 Properties of Liquids;94
9.2.1;2.2.1 Terminology Used in Material Response to Stress;95
9.2.2;2.2.2 Density;95
9.2.3;2.2.3 Viscosity;96
9.3;2.3 Handling Systems for Newtonian Liquids;104
9.3.1;2.3.1 The Continuity Equation;104
9.3.2;2.3.2 Reynolds Number;107
9.3.3;2.3.3 Entrance Region and Fully Developed Flow;111
9.3.4;2.3.4 Velocity Profile in a Liquid Flowing Under Fully Developed Flow Conditions;113
9.3.5;2.3.5 Forces Due to Friction;119
9.4;2.4 Force Balance on a Fluid Element Flowing in a Pipe—Derivation of Bernoulli Equation;123
9.5;2.5 Energy Equation for Steady Flow of Fluids;130
9.5.1;2.5.1 Pressure Energy;133
9.5.2;2.5.2 Kinetic Energy;133
9.5.3;2.5.3 Potential Energy;135
9.5.4;2.5.4 Frictional Energy Loss;135
9.5.5;2.5.5 Power Requirements of a Pump;138
9.6;2.6 Pump Selection and Performance Evaluation;142
9.6.1;2.6.1 Centrifugal Pumps;142
9.6.2;2.6.2 Head;144
9.6.3;2.6.3 Pump Performance Characteristics;144
9.6.4;2.6.4 Pump Characteristic Diagram;148
9.6.5;2.6.5 Net Positive Suction Head;149
9.6.6;2.6.6 Selecting a Pump for a Liquid Transport System;152
9.6.7;2.6.7 Affinity Laws;158
9.7;2.7 Flow Measurement;159
9.7.1;2.7.1 The Pitot Tube;163
9.7.2;2.7.2 The Orifice Meter;165
9.7.3;2.7.3 The Venturi Meter;169
9.7.4;2.7.4 Variable-Area Meters;169
9.7.5;2.7.5 Other Measurement Methods;170
9.8;2.8 Measurement of Viscosity;171
9.8.1;2.8.1 Capillary Tube Viscometer;171
9.8.2;2.8.2 Rotational Viscometer;173
9.8.3;2.8.3 Influence of Temperature on Viscosity;176
9.9;2.9 Flow Characteristics of Non-Newtonian Fluids;178
9.9.1;2.9.1 Properties of Non-Newtonian Fluids;178
9.9.2;2.9.2 Velocity Profile of a Power Law Fluid;184
9.9.3;2.9.3 Volumetric Flow Rate of a Power Law Fluid;185
9.9.4;2.9.4 Average Velocity in a Power Law Fluid;186
9.9.5;2.9.5 Friction Factor and Generalized Reynolds Number for Power Law Fluids;186
9.9.6;2.9.6 Computation of Pumping Requirement of Non-newtonian Liquids;189
9.10;2.10 Transport of solid foods;192
9.10.1;2.10.1 Properties of Granular Materials and Powders;193
9.10.2;2.10.2 Flow of Granular Foods;198
9.11;Problems;201
9.12;List of Symbols;206
9.13;Bibliography;208
10;CHAPTER 3 Energy and Controls in Food Processes;210
10.1;3.1 Generation of Steam;210
10.1.1;3.1.1 Steam Generation Systems;211
10.1.2;3.1.2 Thermodynamics of Phase Change;213
10.1.3;3.1.3 Steam Tables;217
10.1.4;3.1.4 Steam Utilization;223
10.2;3.2 Fuel Utilization;227
10.2.1;3.2.1 Systems;229
10.2.2;3.2.2 Mass and Energy Balance Analysis;230
10.2.3;3.2.3 Burner Efficiencies;232
10.3;3.3 Electric Power Utilization;233
10.3.1;3.3.1 Electrical Terms and Units;235
10.3.2;3.3.2 Ohm's Law;236
10.3.3;3.3.3 Electric Circuits;237
10.3.4;3.3.4 Electric Motors;239
10.3.5;3.3.5 Electrical Controls;240
10.3.6;3.3.6 Electric Lighting;241
10.4;3.4 Process Controls in Food Processing;243
10.4.1;3.4.1 Processing Variables and Performance Indicators;245
10.4.2;3.4.2 Input and Output Signals to Control Processes;247
10.4.3;3.4.3 Design of a Control System;247
10.5;3.5 Sensors;255
10.5.1;3.5.1 Temperature;255
10.5.2;3.5.2 Liquid Level in a Tank;257
10.5.3;3.5.3 Pressure Sensors;258
10.5.4;3.5.4 Flow Sensors;259
10.5.5;3.5.5 Glossary of Terms Important in Data Acquisition;260
10.6;3.6 Dynamic Response Characteristics of Sensors;260
10.7;Problems;264
10.8;List of Symbols;267
10.9;Bibliography;268
11;CHAPTER 4 Heat Transfer in Food Processing;270
11.1;4.1 Systems for Heating and Cooling Food Products;271
11.1.1;4.1.1 Plate Heat Exchanger;271
11.1.2;4.1.2 Tubular Heat Exchanger;275
11.1.3;4.1.3 Scraped-surface Heat Exchanger;276
11.1.4;4.1.4 Steam-infusion Heat Exchanger;278
11.1.5;4.1.5 Epilogue;279
11.2;4.2 Thermal Properties of Foods;280
11.2.1;4.2.1 Specific Heat;280
11.2.2;4.2.2 Thermal Conductivity;283
11.2.3;4.2.3 Thermal Diffusivity;285
11.3;4.3 Modes of Heat Transfer;287
11.3.1;4.3.1 Conductive Heat Transfer;287
11.3.2;4.3.2 Convective Heat Transfer;290
11.3.3;4.3.3 Radiation Heat Transfer;292
11.4;4.4 Steady-State Heat Transfer;293
11.4.1;4.4.1 Conductive Heat Transfer in a Rectangular Slab;294
11.4.2;4.4.2 Conductive Heat Transfer through a Tubular Pipe;297
11.4.3;4.4.3 Heat Conduction in Multilayered Systems;300
11.4.4;4.4.4 Estimation of Convective Heat-Transfer Coefficient;308
11.4.5;4.4.5 Estimation of Overall Heat-Transfer Coefficient;325
11.4.6;4.4.6 Fouling of Heat Transfer Surfaces;329
11.4.7;4.4.7 Design of a Tubular Heat Exchanger;335
11.4.8;4.4.8 The Effectiveness-NTU Method for Designing Heat Exchangers;343
11.4.9;4.4.9 Design of a Plate Heat Exchanger;348
11.4.10;4.4.10 Importance of Surface Characteristics in Radiative Heat Transfer;355
11.4.11;4.4.11 Radiative Heat Transfer between Two Objects;357
11.5;4.5 Unsteady-State Heat Transfer;360
11.5.1;4.5.1 Importance of External versus Internal Resistance to Heat Transfer;362
11.5.2;4.5.2 Negligible Internal Resistance to Heat Transfer (N[sub(Bi)] < 0.1)—A Lumped System Analysis;363
11.5.3;4.5.3 Finite Internal and Surface Resistance to Heat Transfer (0.1 < N[sub(Bi)] < 40);368
11.5.4;4.5.4 Negligible Surface Resistance to Heat Transfer (N[sub(Bi) > 40);371
11.5.5;4.5.5 Finite Objects;371
11.5.6;4.5.6 Procedures to Use Temperature–Time Charts;373
11.5.7;4.5.7 Use of f[sub(h)] and j Factors in Predicting Temperature in Transient Heat Transfer;381
11.6;4.6 Electrical Conductivity of Foods;389
11.7;4.7 Ohmic Heating;392
11.8;4.8 Microwave Heating;394
11.8.1;4.8.1 Mechanisms of Microwave Heating;395
11.8.2;4.8.2 Dielectric Properties;396
11.8.3;4.8.3 Conversion of Microwave Energy into Heat;397
11.8.4;4.8.4 Penetration Depth of Microwaves;398
11.8.5;4.8.5 Microwave Oven;400
11.8.6;4.8.6 Microwave Heating of Foods;401
11.9;Problems;403
11.10;List of Symbols;420
11.11;Bibliography;422
12;CHAPTER 5 Preservation Processes;426
12.1;5.1 Processing Systems;426
12.1.1;5.1.1 Pasteurization and Blanching Systems;427
12.1.2;5.1.2 Commercial Sterilization Systems;429
12.1.3;5.1.3 Ultra-High Pressure Systems;433
12.1.4;5.1.4 Pulsed Electric Field Systems;435
12.1.5;5.1.5 Alternative Preservation Systems;436
12.2;5.2 Microbial Survivor Curves;436
12.3;5.3 Influence of External Agents;441
12.4;5.4 Thermal Death Time F;445
12.5;5.5 Spoilage Probability;446
12.6;5.6 General Method for Process Calculation;447
12.6.1;5.6.1 Applications to Pasteurization;449
12.6.2;5.6.2 Commercial Sterilization;452
12.6.3;5.6.3 Aseptic Processing and Packaging;455
12.7;5.7 Mathematical Methods;463
12.7.1;5.7.1 Pouch Processing;467
12.8;Problems;470
12.9;List of Symbols;473
12.10;Bibliography;474
13;CHAPTER 6 Refrigeration;478
13.1;6.1 Selection of a Refrigerant;479
13.2;6.2 Components of a Refrigeration System;483
13.2.1;6.2.1 Evaporator;484
13.2.2;6.2.2 Compressor;486
13.2.3;6.2.3 Condenser;489
13.2.4;6.2.4 Expansion Valve;491
13.3;6.3 Pressure–Enthalpy Charts;493
13.3.1;6.3.1 Pressure–Enthalpy Tables;497
13.3.2;6.3.2 Use of Computer-Aided Procedures to Determine Thermodynamic Properties of Refrigerants;498
13.4;6.4 Mathematical Expressions Useful in Analysis of Vapor-Compression Refrigeration;501
13.4.1;6.4.1 Cooling Load;501
13.4.2;6.4.2 Compressor;503
13.4.3;6.4.3 Condenser;503
13.4.4;6.4.4 Evaporator;504
13.4.5;6.4.5 Coefficient of Performance;504
13.4.6;6.4.6 Refrigerant Flow Rate;504
13.5;6.5 Use of Multistage Systems;513
13.5.1;6.5.1 Flash Gas Removal System;514
13.6;Problems;518
13.7;List of Symbols;521
13.8;Bibliography;521
14;CHAPTER 7 Food Freezing;524
14.1;7.1 Freezing Systems;525
14.1.1;7.1.1 Indirect Contact Systems;525
14.1.2;7.1.2 Direct-Contact Systems;530
14.2;7.2 Frozen-Food Properties;533
14.2.1;7.2.1 Density;533
14.2.2;7.2.2 Thermal Conductivity;534
14.2.3;7.2.3 Enthalpy;534
14.2.4;7.2.4 Apparent Specific Heat;536
14.2.5;7.2.5 Apparent Thermal Diffusivity;536
14.3;7.3 Freezing Time;537
14.3.1;7.3.1 Plank's Equation;539
14.3.2;7.3.2 Other Freezing-Time Prediction Methods;543
14.3.3;7.3.3 Pham's Method to Predict Freezing Time;543
14.3.4;7.3.4 Prediction of Freezing Time of Finite-Shaped Objects;547
14.3.5;7.3.5 Experimental Measurement of Freezing Time;551
14.3.6;7.3.6 Factors Influencing Freezing Time;551
14.3.7;7.3.7 Freezing Rate;552
14.3.8;7.3.8 Thawing Time;552
14.4;7.4 Frozen-Food Storage;553
14.4.1;7.4.1 Quality Changes in Foods during Frozen Storage;553
14.5;Problems;557
14.6;List of Symbols;561
14.7;Bibliography;562
15;CHAPTER 8 Evaporation;566
15.1;8.1 Boiling-Point Elevation;568
15.2;8.2 Types of Evaporators;570
15.2.1;8.2.1 Batch-Type Pan Evaporator;570
15.2.2;8.2.2 Natural Circulation Evaporators;571
15.2.3;8.2.3 Rising-Film Evaporator;571
15.2.4;8.2.4 Falling-Film Evaporator;572
15.2.5;8.2.5 Rising/Falling-Film Evaporator;573
15.2.6;8.2.6 Forced-Circulation Evaporator;574
15.2.7;8.2.7 Agitated Thin-Film Evaporator;574
15.3;8.3 Design of a Single-Effect Evaporator;577
15.4;8.4 Design of a Multiple-Effect Evaporator;582
15.5;8.5 Vapor Recompression Systems;588
15.5.1;8.5.1 Thermal Recompression;588
15.5.2;8.5.2 Mechanical Vapor Recompression;589
15.6;Problems;589
15.7;List of Symbols;592
15.8;Bibliography;592
16;CHAPTER 9 Psychrometrics;594
16.1;9.1 Properties of Dry Air;594
16.1.1;9.1.1 Composition of Air;594
16.1.2;9.1.2 Specific Volume of Dry Air;595
16.1.3;9.1.3 Specific Heat of Dry Air;595
16.1.4;9.1.4 Enthalpy of Dry Air;595
16.1.5;9.1.5 Dry Bulb Temperature;596
16.2;9.2 Properties of Water Vapor;596
16.2.1;9.2.1 Specific Volume of Water Vapor;596
16.2.2;9.2.2 Specific Heat of Water Vapor;596
16.2.3;9.2.3 Enthalpy of Water Vapor;597
16.3;9.3 Properties of Air–Vapor Mixtures;597
16.3.1;9.3.1 Gibbs–Dalton Law;597
16.3.2;9.3.2 Dew-Point Temperature;597
16.3.3;9.3.3 Humidity Ratio (or Moisture Content);598
16.3.4;9.3.4 Relative Humidity;599
16.3.5;9.3.5 Humid Heat of an Air–Water Vapor Mixture;599
16.3.6;9.3.6 Specific Volume;600
16.3.7;9.3.7 Adiabatic Saturation of Air;600
16.3.8;9.3.8 Wet Bulb Temperature;602
16.4;9.4 The Psychrometric Chart;605
16.4.1;9.4.1 Construction of the Chart;605
16.4.2;9.4.2 Use of Psychrometric Chart to Evaluate Complex Air-Conditioning Processes;607
16.5;Problems;612
16.6;List of Symbols;615
16.7;Bibliography;616
17;CHAPTER 10 Mass Transfer;618
17.1;10.1 The Diffusion Process;619
17.1.1;10.1.1 Steady-State Diffusion of Gases (and Liquids) through Solids;622
17.1.2;10.1.2 Convective Mass Transfer;623
17.1.3;10.1.3 Laminar Flow over a Flat Plate;627
17.1.4;10.1.4 Turbulent Flow Past a Flat Plate;631
17.1.5;10.1.5 Laminar Flow in a Pipe;631
17.1.6;10.1.6 Turbulent Flow in a Pipe;632
17.1.7;10.1.7 Mass Transfer for Flow over Spherical Objects;632
17.2;10.2 Unsteady-State Mass Transfer;633
17.2.1;10.2.1 Transient-State Diffusion;634
17.2.2;10.2.2 Diffusion of Gases;639
17.3;Problems;642
17.4;List of Symbols;644
17.5;Bibliography;645
18;CHAPTER 11 Membrane Separation;646
18.1;11.1 Electrodialysis Systems;648
18.2;11.2 Reverse Osmosis Membrane Systems;652
18.3;11.3 Membrane Performance;659
18.4;11.4 Ultrafiltration Membrane Systems;660
18.5;11.5 Concentration Polarization;662
18.6;11.6 Types of Reverse-Osmosis and Ultrafiltration Systems;668
18.6.1;11.6.1 Plate and Frame;669
18.6.2;11.6.2 Tubular;669
18.6.3;11.6.3 Spiral-Wound;669
18.6.4;11.6.4 Hollow-Fiber;672
18.7;Problems;672
18.8;List of Symbols;673
18.9;Bibliography;674
19;CHAPTER 12 Dehydration;676
19.1;12.1 Basic Drying Processes;676
19.1.1;12.1.1 Water Activity;677
19.1.2;12.1.2 Moisture Diffusion;680
19.1.3;12.1.3 Drying-Rate Curves;681
19.1.4;12.1.4 Heat and Mass Transfer;681
19.2;12.2 Dehydration systems;683
19.2.1;12.2.1 Tray or Cabinet Dryers;683
19.2.2;12.2.2 Tunnel Dryers;684
19.2.3;12.2.3 Puff-Drying;685
19.2.4;12.2.4 Fluidized-Bed Drying;686
19.2.5;12.2.5 Spray Drying;686
19.2.6;12.2.6 Freeze-Drying;687
19.3;12.3 Dehydration System Design;688
19.3.1;12.3.1 Mass and Energy Balance;688
19.3.2;12.3.2 Drying-Time Prediction;693
19.4;Problems;703
19.5;List of Symbols;708
19.6;Bibliography;709
20;CHAPTER 13 Supplemental Processes;712
20.1;13.1 Filtration;712
20.1.1;13.1.1 Operating Equations;712
20.1.2;13.1.2 Mechanisms of Filtration;718
20.1.3;13.1.3 Design of a Filtration System;719
20.2;13.2 Sedimentation;722
20.2.1;13.2.1 Sedimentation Velocities for Low-Concentration Suspensions;722
20.2.2;13.2.2 Sedimentation in High-Concentration Suspensions;725
20.3;13.3 Centrifugation;728
20.3.1;13.3.1 Basic Equations;728
20.3.2;13.3.2 Rate of Separation;728
20.3.3;13.3.3. Liquid-Liquid Separation;730
20.3.4;13.3.4 Particle-Gas Separation;732
20.4;13.4 Mixing;732
20.4.1;13.4.1 Agitation Equipment;734
20.4.2;13.4.2 Power Requirements of Impellers;737
20.5;Problems;741
20.6;List of Symbols;742
20.7;Bibliography;743
21;CHAPTER 14 Extrusion Processes for Foods;744
21.1;14.1 Introduction and Background;744
21.2;14.2 Basic Principles of Extrusion;745
21.3;14.3 Extrusion Systems;752
21.3.1;14.3.1 Cold Extrusion;753
21.3.2;14.3.2 Extrusion Cooking;754
21.3.3;14.3.3 Single Screw Extruders;755
21.3.4;14.3.4 Twin-Screw Extruders;757
21.4;14.4 Extrusion System Design;758
21.5;14.5 Design of More Complex Systems;763
21.6;Problems;764
21.7;List of Symbols;765
21.8;Bibliography;765
22;CHAPTER 15 Packaging Concepts;768
22.1;15.1 Introduction;768
22.2;15.2 Food Protection;769
22.3;15.3 Product Containment;770
22.4;15.4 Product Communication;771
22.5;15.5 Product Convenience;771
22.6;15.6 Mass Transfer in Packaging Materials;771
22.6.1;15.6.1 Permeability of Packaging Material to "Fixed" Gases;774
22.7;15.7 Innovations in Food Packaging;777
22.7.1;15.7.1 Passive Packaging;778
22.7.2;15.7.2 Active Packaging;778
22.7.3;15.7.3 Intelligent Packaging;779
22.8;15.8 Food Packaging and Product Shelf-life;781
22.8.1;15.8.1 Scientific Basis for Evaluating Shelf Life;781
22.9;15.9 Summary;789
22.10;Problems;789
22.11;List of Symbols;790
22.12;Bibliography;791
23;Appendices;794
23.1;A.1 System of Units and Conversion Factors;794
23.1.1;A.1.1 Rules for Using SI Units;794
23.1.1.1;Table A.1.1: SI Prefixes;794
23.1.1.2;Table A.1.2: Useful Conversion Factors;797
23.1.1.3;Table A.1.3: Conversion Factors for Pressure;799
23.2;A.2 Physical Properties of Foods;800
23.2.1;Table A.2.1: Specific Heat of Foods;800
23.2.2;Table A.2.2: Thermal Conductivity of Selected Food Products;801
23.2.3;Table A.2.3: Thermal Diffusivity of Some Foodstuffs;803
23.2.4;Table A.2.4: Viscosity of Liquid Foods;804
23.2.5;Table A.2.5: Properties of Ice as a Function of Temperature;805
23.2.6;Table A.2.6: Approximate Heat Evolution Rates of Fresh Fruits and Vegetables When Stored at Temperatures Shown;805
23.2.7;Table A.2.7: Enthalpy of Frozen Foods;807
23.2.8;Table A.2.8: Composition Values of Selected Foods;808
23.2.9;Table A.2.9: Coefficients to Estimate Food Properties;809
23.3;A.3 Physical Properties of Nonfood Materials;810
23.3.1;Table A.3.1: Physical Properties of Metals;810
23.3.2;Table A.3.2: Physical Properties of Nonmetals;811
23.3.3;Table A.3.3: Emissivity of Various Surfaces;813
23.4;A.4 Physical Properties of Water and Air;815
23.4.1;Table A.4.1: Physical Properties of Water at the Saturation Pressure;815
23.4.2;Table A.4.2: Properties of Saturated Steam;816
23.4.3;Table A.4.3: Properties of Superheated Steam;818
23.4.4;Table A.4.4: Physical Properties of Dry Air at Atmospheric Pressure;819
23.5;A.5 Psychrometric Charts;820
23.5.1;Figure A.5.1: Psychrometric chart for high temperatures;820
23.5.2;Figure A.5.2: Psychrometric chart for low temperatures;821
23.6;A.6 Pressure-Enthalpy Data;822
23.6.1;Figure A.6.1: Pressure–enthalpy diagram for Refigerant 12;822
23.6.2;Table A.6.1: Properties of Saturated Liquid and Vapor R-12;823
23.6.3;Figure A.6.2: Pressure–enthalpy diagram of superheated R-12 vapor;826
23.6.4;Table A.6.2: Properties of Saturated Liquid and Vapor R-717 (Ammonia);827
23.6.5;Figure A.6.3: Pressure–enthalpy diagram of superheated R-717 (ammonia) vapor;830
23.6.6;Table A.6.3: Properties of Saturated Liquid and Vapor R-134a;831
23.6.7;Figure A.6.4: Pressure–enthalpy diagram of R-134a;834
23.6.8;Figure A.6.5: Pressure–enthalpy diagram of R-134a (expanded scale);835
23.7;A.7 Symbols for Use in Drawing Food Engineering Process Equipment;836
23.8;A.8 Miscellaneous;841
23.8.1;Table A.8.1: Numerical Data, and Area/Volume of Objects;841
23.8.2;Figure A.8.1: Temperature at geometric center of a sphere (expanded scale);842
23.8.3;Figure A.8.2: Temperature at the axis of an infinitely long cylinder (expanded scale);843
23.8.4;Figure A.8.3: Temperature at the midplane of an infinite slab (expanded scale);844
23.9;A.9 Dimensional Analysis;845
23.9.1;Table A.9.1: Dimensions of selected experimental variables;846
23.10;Bibliography;849
24;Index;852
24.1;A;852
24.2;B;852
24.3;C;852
24.4;D;853
24.5;E;853
24.6;F;854
24.7;G;855
24.8;H;855
24.9;I;855
24.10;J;856
24.11;K;856
24.12;L;856
24.13;M;856
24.14;N;856
24.15;O;857
24.16;P;857
24.17;R;858
24.18;S;859
24.19;T;860
24.20;U;860
24.21;V;860
24.22;W;861
24.23;Y;861
24.24;Z;861
25;Food Science and Technology: International Series;862