Sloane / Conway | Sphere Packings, Lattices and Groups | Buch | 978-1-4419-3134-4 | sack.de

Buch, Englisch, Band 290, 706 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 1165 g

Reihe: Grundlehren der mathematischen Wissenschaften

Sloane / Conway

Sphere Packings, Lattices and Groups


3rd Auflage Softcover version of original hardcover Auflage 1999
ISBN: 978-1-4419-3134-4
Verlag: Springer

Buch, Englisch, Band 290, 706 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 1165 g

Reihe: Grundlehren der mathematischen Wissenschaften

ISBN: 978-1-4419-3134-4
Verlag: Springer


We now apply the algorithm above to find the 121 orbits of norm -2 vectors from the (known) nann 0 vectors, and then apply it again to find the 665 orbits of nann -4 vectors from the vectors of nann 0 and -2. The neighbors of a strictly 24 dimensional odd unimodular lattice can be found as follows. If a norm -4 vector v E II. corresponds to the sum 25 1 of a strictly 24 dimensional odd unimodular lattice A and a !-dimensional lattice, then there are exactly two nonn-0 vectors of ll25,1 having inner product -2 with v, and these nann 0 vectors correspond to the two even neighbors of A. The enumeration of the odd 24-dimensional lattices. Figure 17.1 shows the neighborhood graph for the Niemeier lattices, which has a node for each Niemeier lattice. If A and B are neighboring Niemeier lattices, there are three integral lattices containing A n B, namely A, B, and an odd unimodular lattice C (cf. [Kne4]). An edge is drawn between nodes A and B in Fig. 17.1 for each strictly 24-dimensional unimodular lattice arising in this way. Thus there is a one-to-one correspondence between the strictly 24-dimensional odd unimodular lattices and the edges of our neighborhood graph. The 156 lattices are shown in Table 17.I. Figure I 7. I also shows the corresponding graphs for dimensions 8 and 16.

Sloane / Conway Sphere Packings, Lattices and Groups jetzt bestellen!

Zielgruppe


Graduate

Weitere Infos & Material


1 Sphere Packings and Kissing Numbers.- 2 Coverings, Lattices and Quantizers.- 3 Codes, Designs and Groups.- 4 Certain Important Lattices and Their Properties.- 5 Sphere Packing and Error-Correcting Codes.- 6 Laminated Lattices.- 7 Further Connections Between Codes and Lattices.- 8 Algebraic Constructions for Lattices.- 9 Bounds for Codes and Sphere Packings.- 10 Three Lectures on Exceptional Groups.- 11 The Golay Codes and the Mathieu Groups.- 12 A Characterization of the Leech Lattice.- 13 Bounds on Kissing Numbers.- 14 Uniqueness of Certain Spherical Codes.- 15 On the Classification of Integral Quadratic Forms.- 16 Enumeration of Unimodular Lattices.- 17 The 24-Dimensional Odd Unimodular Lattices.- 18 Even Unimodular 24-Dimensional Lattices.- 19 Enumeration of Extremal Self-Dual Lattices.- 20 Finding the Closest Lattice Point.- 21 Voronoi Cells of Lattices and Quantization Errors.- 22 A Bound for the Covering Radius of the Leech Lattice.- 23 The Covering Radius of the Leech Lattice.- 24 Twenty-Three Constructions for the Leech Lattice.- 25 The Cellular Structure of the Leech Lattice.- 26 Lorentzian Forms for the Leech Lattice.- 27 The Automorphism Group of the 26-Dimensional Even Unimodular Lorentzian Lattice.- 28 Leech Roots and Vinberg Groups.- 29 The Monster Group and its 196884-Dimensional Space.- 30 A Monster Lie Algebra?.- Supplementary Bibliography.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.