Buch, Englisch, 208 Seiten, Format (B × H): 111 mm x 174 mm, Gewicht: 170 g
Reihe: Very Short Introductions
A Very Short Introduction
Buch, Englisch, 208 Seiten, Format (B × H): 111 mm x 174 mm, Gewicht: 170 g
Reihe: Very Short Introductions
ISBN: 978-0-19-285378-3
Verlag: Oxford University Press
Chaos exists in systems all around us. Even the simplest system of cause and effect can be subject to chaos, denying us accurate predictions of its behaviour, and sometimes giving rise to astonishing structures of large-scale order. Our growing understanding of Chaos Theory is having fascinating applications in the real world - from technology to global warming, politics, human behaviour, and even gambling on the stock market.
Leonard Smith shows that we all have an intuitive understanding of chaotic systems. He uses accessible maths and physics (replacing complex equations with simple examples like pendulums, railway lines, and tossing coins) to explain the theory, and points to numerous examples in philosophy and literature (Edgar Allen Poe, Chang-Tzu, Arthur Conan Doyle) that illuminate the problems. The beauty of fractal patterns and their relation to chaos, as well as the history of chaos, and its uses in the
real world and implications for the philosophy of science are all discussed in this Very Short Introduction.
ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Geometrie Dynamische Systeme
- Interdisziplinäres Wissenschaften Wissenschaften: Allgemeines Populärwissenschaftliche Werke
- Mathematik | Informatik Mathematik Mathematik Allgemein Geschichte der Mathematik
- Naturwissenschaften Physik Angewandte Physik Statistische Physik, Dynamische Systeme
- Geowissenschaften Umweltwissenschaften Umweltwissenschaften
- Interdisziplinäres Wissenschaften Wissenschaften: Allgemeines Geschichte der Naturwissenschaften, Formalen Wissenschaften & Technik