Soares / Torgo | Discovery Science | E-Book | sack.de
E-Book

E-Book, Englisch, 474 Seiten, eBook

Reihe: Lecture Notes in Artificial Intelligence

Soares / Torgo Discovery Science

24th International Conference, DS 2021, Halifax, NS, Canada, October 11–13, 2021, Proceedings
1. Auflage 2021
ISBN: 978-3-030-88942-5
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

24th International Conference, DS 2021, Halifax, NS, Canada, October 11–13, 2021, Proceedings

E-Book, Englisch, 474 Seiten, eBook

Reihe: Lecture Notes in Artificial Intelligence

ISBN: 978-3-030-88942-5
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book constitutes the proceedings of the 24th International Conference on Discovery Science, DS 2021, which took place virtually during October 11-13, 2021. The 36 papers presented in this volume were carefully reviewed and selected from 76 submissions. The contributions were organized in topical sections named: applications; classification; data streams; graph and network mining; machine learning for COVID-19; neural networks and deep learning; preferences and recommender systems; representation learning and feature selection; responsible artificial intelligence; and spatial, temporal and spatiotemporal data.
Soares / Torgo Discovery Science jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Applications .- Automated Grading of Exam Responses: An Extensive Classification Benchmark.- Automatic human-like detection of code smells.- HTML-LSTM: Information Extraction from HTML Tables in Web Pages using Tree-Structured LSTM.- Predicting reach to find persuadable customers: improving uplift models for churn prevention.- Classification .- A Semi-Supervised Framework for Misinformation Detection.- An Analysis of Performance Metrics for Imbalanced Classification.- Combining Predictions under Uncertainty: The Case of Random Decision Trees.- Shapley-Value Data Valuation for Semi-Supervised Learning.- Data streams .- A Network Intrusion Detection System for Concept Drifting Network Traffic Data.- Incremental k-Nearest Neighbors Using Reservoir Sampling for Data Streams.- Statistical Analysis of Pairwise Connectivity.- Graph and Network Mining .- FHA: Fast Heuristic Attack against Graph Convolutional Networks.- Ranking Structured Objects with Graph Neural Networks.- Machine Learning for COVID-19 .- Knowledge discovery of the delays experienced in reporting covid19 confirmed positive cases using time to event models.- Multi-Scale Sentiment Analysis of Location-Enriched COVID-19 Arabic Social Data.- Prioritization of COVID-19 literature via unsupervised keyphrase extraction and document representation learning.- Sentiment Nowcasting during the COVID-19 Pandemic.- Neural Networks and Deep Learning .- A Sentence-level Hierarchical BERT Model for Document Classification with Limited Labelled Data.- Calibrated Resampling for Imbalance and Long-Tails in Deep learning.- Consensus Based Vertically Partitioned Multi-Layer Perceptrons for Edge Computing.- Controlling BigGAN Image Generation with a Segmentation Network.- GANs for tabular healthcare data generation: a review on utility and privacy.- Preferences and Recommender Systems .- An Ensemble Hypergraph Learning framework for Recommendation.- KATRec: Knowledge Aware aTtentive Sequential Recommendations.- Representation Learning and Feature Selection.- Elliptical Ordinal Embedding.- Unsupervised Feature Ranking via Attribute Networks.- Responsible Artificial Intelligence .- Deriving a Single Interpretable Model by Merging Tree-based Classifiers.- Ensemble of Counterfactual Explainers. Riccardo Guidotti and Salvatore Ruggieri.- Learning Time Series Counterfactuals via Latent Space Representations.- Leveraging Grad-CAM to Improve the Accuracy of Network Intrusion Detection Systems.- Local Interpretable Classifier Explanations with Self-generated Semantic Features.- Privacy risk assessment of individual psychometric profiles.- The Case for Latent Variable vs Deep Learning Methods in Misinformation Detection: An Application to COVID-19.- Spatial, Temporal and Spatiotemporal Data .- Local Exceptionality Detection in Time Series Using Subgroup Discovery.- Neural Additive Vector Autoregression Models for Causal Discovery in Time Series.- Spatially-Aware Autoencoders for Detecting Contextual Anomalies in Geo-Distributed Data.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.